पर्यावरण विज्ञान संभाग

Division Of Environmental Sciences

आईसीएआर - भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली 110012

बायोगैस: कृषि अपशिष्ट प्रबंधन और ऊर्जा उत्पादन के लिए एक स्थायी समाधान

परिचय

वर्तमान समय में अपशिष्ट प्रबंधन एक गंभीर वैश्विक समस्या बन चुका है। बढ़ती जनसंख्या, शहरीकरण और औद्योगिकीकरण के कारण अपशिष्ट की माला में निरंतर वृद्धि हो रही है। सही प्रबंधन से न केवल पर्यावरण को संरक्षित किया जा सकता है, बल्कि संसाधनों के पुनः उपयोग से बायोगैस ऊर्जा उत्पादन और आर्थिक विकास में भी योगदान दिया जा सकता है। बायोगैस सूक्ष्मजीवों द्वारा उत्पादित गैसों का मिश्रण है। यह ऊर्जा का एक नवीकरणीय स्रोत है। मीथेन बायोगैस मिश्रण में मौजूद प्रमुख गैस हहै।

अवायवीय पाचन प्रक्रिया

बायोगैस का उत्पादन में पशुओं के गोबर, बचे हुए चारे, पत्ते, सब्जियों के छिलके, फसलों के अवशेष आदि का इस्तेमाल किया जाता हैं। इन अपशिष्टों में शामिल बैक्टीरिया इसे ऑक्सीजन रहित कुएं में गलने और सड़ने के बाद बायोगैस में परिवर्तित कर देते हैं।

यह एक किण्वन प्रक्रिया है, और इसके उत्पादन में सहायक सभी जीवाणु हवा की अनुपस्थिति में कार्य करते हैं। गोबर, वनस्पति पदार्थ, मल-मूल आदि के किण्वन की प्रक्रिया चार चरणों में चार समूह के जीवाणुओं द्वारा होती है।

- प्रथम चरण हाइड्रोलिसिस में हाइड्रोलिटिक जीवाणु वनस्पति पदार्थ/गोबर 1. में उपस्थिति अधिक अणुभार वाले पदार्थों को कम अणुभार में बदल देते हैं।
- दूसरे चरण एसिडोजेनेसिस के जीवाणु प्रथम चरण के पदार्थों को 2. मीथेनोजेनिक सब्सट्रेट अल्कोहल अमीनो एसिड और फैटी एसिड में बदलते हैं।
- तीसरे चरण एसीटोजेनेसिस में होमो एसीटोजीन्स जीवाणु हाइड्रोजन और 3. प्रथम दो चरणों में प्राप्त कार्बन के सरल योगिक को पुन: एसीटेट में बदुलता है ।
- अंतिम चरण मीथेनोजेनेसिस में मीथेनोजीन्स जीवाणु, एसीटेट, कार्बन 4.
- डाइऑक्साइड व हाइड्रोजन को मीथेन में परिवर्तित कर देते है।

बायोगैस का संघटन

सूत्र

 CH_4

 CO_2

 H_2

 N_2

H,0

H₂S

others

घटक

मीथेन

कार्बन डाइऑक्साइड

हाइड्रोजन

नाइट्रोजन

पानी (भाप)

हाइड्रोजन सल्फाइड

अन्य

बायोगैस बनाने की विधि तथा उपयोग

गोबर और पानी को 1:1 अनुपात में मिलाकर घोल बनाया जाता है। इस घोल को ऑक्सीजन रहित स्थान में गलन के लिए डाल दिया जाता है, जिससे उसमें कीटाणु (जो बायोगैस बनाते हैं) पैदा हो जाते हैं। डाइजेस्टर गैस होल्डर से ढका होता है ताकि 25 से 30 डिग्री तापमान पर खमीर उठाकर गैस को गैस होल्डर में इकट्ठा किया जा सके। बायोगैस का उपयोग खाना पकाने के लिए ईंधन के रूप में , प्रकाश व्यवस्था के उद्देश्य से सिल्क मेंटल लैंप में, परिवहन ईंधन के रूप में , गैस इंजन (ओटो मोटर), गैस टर्बाइन बिजली का उत्पादन के लिए किया जा सकता है।

आकार के अनुरूप बायगिस प्लाटी के लिए जरूरत				
प्लांट व	ना आकार	पशुओं की	गोबर की माला	कितने लोगों का खाना
घनमीटर	घनफुट	गिनती	(कि.ग्रा.)	बना सकते हैं
1	35	2-3	25	2-3
4	140	7-8	100	10-11

 $1~{
m m}^3$ बायोगैस के लिए ईंधन की समतुल्य माला

क्रम न:	ईंधन	मात्रा
1.	मिट्टी का तेल	0.62 litre
2.	जलाऊ लकड़ी	3.47 kg
3.	गाय के गोबर का उपला	12.29 kg
4.	बिजली	4.69 kWh
5.	सीएनजी	0.9 m ³
6.	पेट्रोल	0.5 litre

0.6 litre

		X E BAR
%		
50-65		
30-40		
1-5		
1	1	
0.1	1 The second second	
0.1	Contractor and a second	a state of the sta
0.1		2177 / . Call

डीज़ल

7.

Biogas: A sustainable solution for agricultural waste management and energy production

Introduction

- India generates approximately 500 million tons of crop residues annually, with 141 million tons as surplus, of which 92 million tons are burned in open fields.
- Crop residue burning and mishandling causes air pollution, greenhouse gas emissions, loss of soil nutrients & organic matter and deteriorate plants, human and animals health.
- To manage this surplus residue effectively, biogas production offers a sustainable solution by generating energy and organic manure.

Process of biogas production

- Biogas production process uses the cattle dung, straw, leaves, vegetable waste, crop residue, etc. as raw material.
- The solution is made by mixing cow dung and water in 1:1 ratio.
- This solution is poured to in digester under anaerobic condition which converged into biogas by methanogenic bacteria at 25 to 30°C temperature.
- The gas produced in the digester is collected in gas holder which further can be utilized for energy production and other applications.

- The process of fermentation of dung, biological material, feces and urine etc. converted into biogas through four stages by different groups of bacteria.
- **1.** Stage I (Hydrolysis): Complex organic materials are broken down into simpler molecules
- 2. Stage II (Acidogenesis): simple molecules produced in hydrolysis are converted by bacteria into organic acids (e.g., lactic acid, acetic acid) and volatile fatty acids (VFAs)
- 3. Stage III (acetogenesis): Acetogens converts acids into acetate, H₂ and CO₂
- 4. Stage IV (methanogenesis): Methanogenic bacteria

Specifications of biogas plants according size

Plan	t size	No. of	Quantity of	Gas supports
m ³	ft ³	animals	dung (kg)	cooking for (persons)
1	35	2-3	25	2-3
4	140	7-8	100	10-11
6	210	10-12	150	14-16
12	420	22-24	300	28-30
15	525	26-28	375	35-40

Uses of biogas

Equivalent quantity of fuel for 1 m³ of biogas

S. No.	Fuel	Quantity
1.	Kerosene	0.62 litre
2.	Fire-wood	3.47 kg
3.	Cow dung cake	12.29 kg
4.	Electricity	4.69 kWh
5.	CNG	0.9 m ³
6.	Petrol	0.5 litre
7.	Diesel	0.6 litre

convert acetate, carbon dioxide and hydrogen into methane

Composition of biogas				
Component	Formula	%		
Methane	CH ₄	50-65		
Carbon dioxide	CO ₂	30-40		
Hydrogen	H ₂	1-5		
Nitrogen	N ₂	1		
Water vapour	H ₂ O	0.1		
Hydrogen sulphide	H ₂ S	0.1		
other	others	0.1		

Division of Environmental Sciences, ICAR-IARI, New Delhi 12 Contact: Head, Environmental Sciences, email: head_envir@iari.res.in; soora.nareshkumar@icar.gov.in Information Compiled by: Dr. Sunita Yadav, Dr. Sandeep Kumar and Dr. Shiv Prasad