

प्रवेशांक

जल सुरक्षा

त्रैमासिक पत्रिका

उन्नत जल संसाधन प्रबंधन द्वारा खाद्य सुरक्षा

जल प्रौद्योगिकी केंद्र

भा.कृ.अनु.प. - भारतीय कृषि अनुसंधान संस्थान नई दिल्ली -110012 (भारत)

प्रवेशांक

जल सुरक्षा

त्रैमासिक पत्रिका

उन्नत जल संसाधन प्रबंधन द्वारा खाद्य सुरक्षा

जल प्रौद्योगिकी केंद्र भा.कृ.अनु.प. - भारतीय कृषि अनुसंधान संस्थान नई दिल्ली -110012 (भारत)

संरक्षक मंडल:

1. डॉ. अशोक कुमार सिंह, निदेशक, भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली

- 2. डॉ. अनुपमा सिंह, संयुक्त-निदेशक (शिक्षा) एवं अधिष्ठाता, भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली
- 3. डॉ. विश्वनाथन चिन्नुसामी, संयुक्त-निदेशक (अनुसंधान), भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली
- 4. डॉ. आर. एन. पड़ारिया, संयुक्त-निदेशक (प्रसार), भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली
- 5. डॉ. पी. एस. ब्रह्मानन्द, परियोजना निदेशक, जल प्रौद्योगिकी केंद्र, भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली

संपादक मंडल:

- **मुख्य संपादक:** डॉ. अनिल कुमार मिश्र
- संपादक: डॉ. विजय प्रजापित, डॉ. नीता द्विवेदी, डॉ. मोनालिशा प्रामाणिक, डॉ. सुसमा सुधिश्री, श्री सतेन्द्र कुमार, डॉ. वीरेंद्र कुमार
- तकनीकी सहायक: श्रीमती सतेन्द्र कौर, श्री संजय, श्री शशिकांत, श्री आकाश पटेल, श्री जगत कुमार

© प्रकाशकाधीन (सर्वाधिकार सुरक्षित)

प्रकाशक: परियोजना निदेशक, जल प्रौद्योगिकी केंद्र, भा.कृ.अनु.प.-भारतीय कृषि अनुसंधान संस्थान नई दिल्ली -110012 (भारत)

(सर्वाधिकार प्रकाशक के अधीन; इस प्रकाशन में व्यक्त किए गए विचार लेखकों के अपने विचार हैं और प्रकाशक अथवा संपादक इस प्रकाशन में दी गई सामाग्री के अनुप्रयोग से होने वाली किसी भी प्रकार की क्षति /हानि के लिए उत्तरदायी नहीं हैं)

अथ श्री गणेश वंदना

।।प्रार्थना।।

विघ्नेश्वराय वरदाय सुरप्रियाय लम्बोदराय सकलाय जगद्धिताय। नागाननाय श्रुतियज्ञविभूषिताय गौरीसुताय गणनाथ नमो नमस्ते।। लम्बोदर नमस्तुभ्यं सततं मोदकप्रिय। निर्विविघ्नं कुरु मे देव सर्वकार्येषु सर्वदा।। अनया पूजया सिद्धि-बुद्धि-सिहतः श्रीमहागणपतिः साङ्गः परिवारः प्रीयताम्।। श्रीविघ्नराजप्रसादात्कर्तव्यामुककर्मनिर्विघ्नसमाप्तिश्चास्तु।

भा.कृ.अ.प.-भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली—110012 (भारत) ICAR - INDIAN AGRICULTURAL RESEARCH INSTITUTE

(A Deemed to be University under Section 3 of UGC Act, 1956) New Delhi-110012 (INDIA)

डॉ. अशोक कुमार सिंह निदेशक Dr. Ashok Kumar Singh DIRECTOR Phones: +91 11 2584 2367, 2584 3375

Fax : +91 11 2584 6420 Email : director@iari.res.in Website : www.iari.res.in

संदेश

यह बहुत ही हर्ष का विषय है कि जल प्रौद्योगिकी केंद्र, भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली द्वारा जल से सम्बन्धित एक गृह पत्रिका "जल सुरक्षा" का प्रवेशांक विश्व जल दिवस के शुभ अवसर पर प्रकाशित हो रहा है। समकालीन परिपेक्ष्य में वैश्विक तापमान वृद्धि एवं जलवायु परिवर्तन के कारण जल संकट की चुनौतियों को समझने तथा समाधान के विकल्प खोजने के लिए यह एक सराहनीय कदम है।

भविष्य में होने वाले जल संकट को देखते हुए कृषि में उन्नत जल प्रबंधन अति आवश्यक है। एक-एक बूंद की महत्ता (पर ड्राप मोर क्रॉप) को देखते हुए सटीक सिंचाई का कृषि में महत्त्वपूर्ण योगदान हो सकता है जिससे न केवल जल दक्षता में वृद्धि होगी अपितु जल की बचत कर अधिक से अधिक क्षेत्र में फ़सलोत्पादन किया जा सकता है। साथ ही निम्न गुणवत्ता वाले या अपशिष्ट जल के पुन: उपयोग के विकल्प भी खोजने की महती आवश्यकता है।

यह पत्रिका नवोन्मेषी विचार, तकनीकियों के उपयोग, सूक्ष्म सिंचाई, सौर ऊर्जा के स्रोत का प्रयोग जैसे महत्वपूर्ण विषयों पर पाठकों और किसानों को अवगत कर जन जागरण फ़ैलाने का काम करेगी। साथ ही इस पत्रिका में किसानों और स्कूली बच्चों के पत्र, सुझाव, पेंटिंग तथा कविता को शामिल कर उनके विचार और संदेश जन मानस तक पहुँचाने का काम करेगी।

यह पत्रिका राजभाषा हिंदी में होने के कारण पूरे भारत में अपनी बात व्यक्त करने में सफल होगी और हिंदी के प्रचार-प्रसार में भृमिका निभाएगी।

इस पत्रिका के प्रकाशन के लिए मैं इससे जुड़े सभी लोगों को हार्दिक शुभकामनाएँ देता हूँ और इसके सफलता की कामना करता हूँ ।

> <u>्र्रा</u> (अशोक कुमार सिंह)

स्थान : नई -दिल्ली दिनांक: 15-03-2024

भा.कृ.अनु.प.-भारतीय कृषि अनुसंधान संस्थान नई दिल्ली-110 012 (भारत)

ICAR - INDIAN AGRICULTURAL RESEARCH INSTITUTE

(A Deemed to be University Under Section 3 of UGC Act, 1956) NEW DELHI-110 012 (India)

डॉ. अनुपमा सिंह संयुक्त निर्देशक (शिक्षा) एवं अधिष्ठाता

Dr. Anupama Singh Joint Director (Edu.) & Dean

यह बहुत ही हर्ष की बात है कि विश्व जल दिवस के शुभ अवसर पर "जल सुरक्षा" नामक एक महत्वपूर्ण पत्रिका का प्रकाशन हो रहा है। जनसँख्या वृद्धि एवं जलवायु परिवर्तन के कारण लगभग प्रति व्यक्ति जल उपलब्धता में कमी आ रही है और भविष्य में जल संकट की गंभीर चुनौतियों का सामना करना पड़ सकता है। भारत में उपलब्ध जल का लगभग 80% हिस्सा कृषि क्षेत्र में इस्तेमाल किया जाता है। हालाँकि अभी भी कृषि योग्य भूमि का केवल 50% क्षेत्र ही सिंचित है और ज्यादातर हिस्से खुली सिंचाई पर आधारित होने के कारण इन की जल उपयोग दक्षता काफी कम (45-50%) है। ऐसे क्षेत्रों में जल उपयोग दक्षता बढ़ाने की अपार संभावनाएं है जिससे जल की बचत कर सिंचित क्षेत्र को बढ़ाया जा सकता है। आधुनिक एवं उपयुक्त तकनीकी का ज्ञान और उसके उपयोग से उचित जल का उन्नत प्रबंधन कर इस लक्ष्य की प्राप्ति की जा सकती है।

मुझे पूरी आशा है कि इस पत्रिका के माध्यम से उचित जल प्रबंधन के सम्यक ज्ञान और तकनीकियों की सूचना देश भर के किसानों तक पहुँच पाएगी साथ ही किसानों एवं स्कूली बच्चों के विचारों को भी पढ़ने और समझने का अवसर मिलेगा।

मैं इस पत्रिका से जुड़े लोगों के प्रयास की सराहना करते हुए पूरे जल प्रौद्योगिकी केंद्र को इस कार्य के लिए बधाई देती हूँ तथा इस पत्रिका की सफलता की कामना करती हूँ।

स्थान : नई -दिल्ली

दिनांक: 20-03-2024

संयुक्त-निदेशक(शिक्षा) एवं अधिष्ठाता

भा.कृ.अ.प. - भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली -110012 ICAR - INDIAN AGRICULTURAL RESEARCH INSTITUTE NEW DELHI - 110012

डॉ. विश्वनाथन चिन्नुसामी संयुक्त निदेशक (अनुसंधान) Dr. Viswanathan Chinnusamy Joint Director (Research)

Phone (off.) : 011-25843379 E-mail: jd_research@iari.res.in; jointdirector.res@gmail.com; v.chinnusamy@icar.gov.in

संदेश

मुझे अत्यंत हर्ष है कि विश्व जल दिवस के अवसर पर "जल सुरक्षा" नामक पत्रिका का प्रकाशन हो रहा है। जलवायु परिवर्तन से जल संसाधन पर होने वाली चुनौतियों के समाधान के लिए कृषि में उन्नत जल प्रबंधन तकनीकी अति आवश्यक है।जल के मितव्ययितापूर्ण उपयोग के उद्देश्यों की प्राप्ति हेतु हमारे वैज्ञानिकों एवं किसानों को 'पर ड्राप मोर क्रॉप' हेतु मिल जुल-कर काम करना होगा। आधुनिक तकनीिकयों के प्रयोग से जल दक्षता में वृद्धि करने के लक्ष्य को पूरा करना होगा तथा निम्न गुणवत्ता वाले जल को प्रयोग में लाने की तकनीिकयों को उपयोग में लाना होगा, साथ ही अपिशष्ट जल के पुन: उपयोग पर भी जोर देना होगा। ऐसी आशा की जाती है कि इस पत्रिका के माध्यम से आधुनिक और नई तकनीकों का ज्ञान जन-जन तक पहुंचेगी और लोग इसका लाभ उठा पाएंगे।

इस पत्रिका में विषय-वस्तु के विशेषज्ञ के ज्ञान के साथ साथ किसानों, बच्चो तथा अन्य नागरिकों के भी अनुभव, लेख, चित्र और कविताओं को भी समाहित किया जा रहा है जो कि बहुत ही सराहनीय एवं समावेशी पहल है। पत्रिका "जल सुरक्षा" के प्रवेशांक के प्रकाशन पर मैं जल प्रौद्योगिकी केंद्र के सभी लोगो को बधाई देता हूँ तथा इसकी सफलता की कामना करता हूँ।

स्थान : नई दिल्ली

दिनांक: 19-03-2024

(विश्वनाथन चिन्नुसामी)

संयुक्त निदेशक (अनुसंधान)

भा.कृ.अनु.प.-भारतीय कृषि अनुसंधान संस्थान नई दिल्ली-110 012 (भारत)

ICAR - INDIAN AGRICULTURAL RESEARCH INSTITUTE

(A Deemed to be University Under Section 3 of UGC Act, 1956)
NEW DELHI-110 012 (India)

डॉ. रवीन्द्र पडारिया संयुक्त निदेशक (प्रसार)

Dr. Rabindra Padaria

Joint Director (Extension)

संदेश

Phone: 011-25842387 (O)
Mob.: 9968966766
E-mail: jd extn@iari.res.in

मुझे अत्यंत हर्ष हो रहा है कि विश्व जल दिवस के शुभ अवसर पर "जल सुरक्षा" नामक एक महत्वपूर्ण पत्रिका का प्रकाशन किया जा रहा है। कृषि में जल संसाधन की महत्ता बहुत अधिक है। अभी भी बहुत से ऐसे क्षेत्र हैं जहाँ जल के अभाव में कृषि-कार्य प्रभावशाली रूप से नहीं हो पा रहा है। हमारे देश का लगभग आधा कृषि क्षेत्र अभी भी वर्षा- आधारित है, ऐसे में फ़सल की उत्पादकता बढ़ाने और किसानों की आय दोगुनी करने के लिए जल दक्षता बढ़ाने के साथ-साथ आधुनिक तकनीकियों के सम्यक प्रयोग की बहुत आवश्यकता है।

वैश्विक जलवायु परिवर्तन के प्रभाव को समझते हुए वर्षा जल को संरक्षित कर उसका सही मात्रा और उपयुक्त समय पर प्रयोग से फसलों को पर्याप्त जल प्रदान किया जा सकता है। हमारे किसान भाई आधुनिक एवं उपयुक्त तकनीकी और उचित परामर्श के साथ जल का उन्नत प्रबंधन कर सकते हैं।

मुझे पूर्ण विश्वास है कि इस पत्रिका के माध्यम से जल प्रबंधन की तकनीकियों का सम्यक ज्ञान, विशेषज्ञों की राय, किसानों के संवाद तथा स्कूली बच्चों के विचारों को पढ़ने और साझा करने का मौका मिलेगा जो कि एक सराहनीय पहल होगी और इस तरह की लाभप्रद जानकारी हर गाँव, हर किसान तक पहुंच पायगी।

मैं जल प्रौद्योगिकी केंद्र के द्वारा इस दिशा में किये जा रहे प्रयासों की भूरि-भूरि प्रशंसा करते हुए इस पत्रिका की सफलता की कामना करता हूँ। ऐसा मेरा विश्वास है कि यह पत्रिका पूरे भारतवर्ष में जल संरक्षण हेतु जन चेतना फैलाएगी।

स्थान : नई -दिल्ली

दिनांक: 15-03-2024

(रवीन्द्र नाथ पडारिया)

संयुक्त-निदेशक, कृषि प्रसार

डॉ. पी. एस. ब्रह्मानंद परियोजना निदेशक Dr. P. S. Brahmanand Project Director

जल प्रौद्योगिकी केन्द्र

भा.कृ.अ.प.—भारतीय कृषि अनुसंधान संस्थान नई दिल्ली—110012

WATER TECHNOLOGY CENTRE
ICAR-INDIAN AGRICULTURAL RESEARCH INSTITUTE
NEW DELHI-110012

परियोजना निदेशक की कलम से......

हमारा देश विश्व के अन्य सभी देशों की भांति ही वैश्विक जलवायु परिवर्तन की चुनौतियों से जूझ रहा है। विभिन्न प्रकार की आपदाओं की आवृत्ति और तीव्रता को ध्यान में रखें तो हम यह पाते हैं कि जल से संबन्धित विभिन्न विषयों में वैज्ञानिक सलाह और शोध आधारित क्रियाकलापों के कार्यान्वयन के द्वारा हम न केवल उन सभी समस्याओं का सफलता पूर्वक सामना कर सकने में सक्षम हैं वरन उन के निराकरण में भी सक्षम हैं। साथ ही उन समस्याओं जैसे; सूखा, बाढ़, भू-स्खलन, भू-अपरदन, गुणवत्ता हास और अपशिष्ट जल में वृद्धि इत्यादि के होते हुये भी उन्नत जल प्रबंधन के द्वारा देश के गुणवत्तापूर्ण फ़सलोत्पादन में किसी भी प्रकार की कमी नहीं आने दे सकते हैं। अर्थात कृषि क्षेत्रों में उन्नत जल प्रबंधन ही वैश्विक जलवायु प्रबंधन की कुंजी है।

जल जागरण को सुगमता से पूरे भारतवर्ष में पहुँचाने के भावना से प्रेरित होकर वैज्ञानिकों की सहमित से यह निर्णय लिया गया है कि केंद्र अपने शोध कार्यों को जन मानस से परिचित करवाने के लिए हर तीसरे माह राजभाषा में रचित आलेखों के माध्यम से एक पत्रिका में उन्नत शोध कार्यों की जानकारी देगा और इस के साथसाथ किसानों की समस्याओं के समाधान हेतु उन के द्वारा समय समय पर पूंछे वाले प्रश्नों का सम्यक उत्तर भी देगा। जिससे किसानों को सिंचन, जल प्रबंधन और जल निकास, भू-जल, भू—जल पुनर्भरण, सतही और भू जल की गुणवत्ता, अपशिष्ट जल के अनुप्रयोगों और फसल जल मांग का निर्धारण, सिंचाई की विधियों इत्यादि के बारे समग्र जानकारी पत्रिका के माध्यम से सुचारु रूप से दिया जा सके। मेरा दृढ़ विश्वास है कि यह पत्रिका अपने उद्देश्यों में पूर्णत: सफल सिद्ध होगी।

स्थान : नई -दिल्ली

दिनांक: 15-03-2024

पी (गस की अनर्ने) (पी. एस. ब्रह्मानन्द)

परियोजना निदेशक

जल प्रौद्योगिकी केंद्र

भारतीय कृषि अनुसंधान परिषद -भारतीय कृषि अनुसंधान संस्थान नई दिल्ली -110012

संपादकीय

शुद्ध, स्वच्छ, जल पृथ्वी पर उपलब्ध वस्तुतः अमृत ही है जो सभी प्राणियों के जीवन का आधार और जीवन की सर्वप्रथम मूलभूत आवश्यकता है। जल ही वह आदि तत्व है जिसके बिना जीवन की कल्पना करना निर्थक एवं असंभव है। पृथ्वी पर उपलब्ध जल की समग्र मात्रा का मात्र 2.97 या 3.0 प्रतिशत जल ही शुद्ध एवं मीठा होने के कारण व्यवहारणीय है और इसकी त्वरित उपलब्धता की भी एक सीमा है। पृथ्वी पर उपलब्ध समस्त जल का लगभग 94-97% समुद्री जल महासागरों में स्थित है। शेष 3-6% में सभी मीठे पानी के संसाधन स्थित हैं। इसका लगभग आधा हिस्सा बर्फ, ग्लेशियरों और हिमखंडों में जमा हुआ है, लगभग आधा भूमिगत जल के रूप में भूमिगत पाया जाता है और एक प्रतिशत का एक अंश (0.1% से कम) सतही जल है जो नदियों, झीलों, जलाशयों, वायुमंडल और सभी जीवित चीजों में पाया जाता है। वाष्पोत्सर्जन के द्वारा विभिन्न स्रोतों से सूर्य के प्रखर ताप से जो जल भाप बन कर वातावरण में प्रतिस्थापित होता है वह जल वर्षा द्वारा पृथ्वी की सतह पर पुनः लौट आता है। भूमि पर, इस जल का कुछ हिस्सा सतह के ऊपर से नदियों और झीलों में झीलों, जलाशयों और महासागरों में बह जाता है। शेष भूमि की सतह में घुसपैठ करता है और जल भ्रीतों में समा जाता है। कुछ पानी महासागरों से सीधे जलभरों में प्रवेश कर सकता है। पृथ्वी के आंतरिक भाग की ऊर्जा भूवैज्ञानिक प्रक्रियाओं को संचालित करती है जो भूजल के निर्माण, प्रवाह, भंडारण, संचलन और भण्डार को प्रभावित करती है। भूजल भूमि पर सतही जल का स्रोत हो सकता है और महासागरों में प्रवाहित हो सकता है।

वह अमृतुल्य स्वच्छ शुद्ध पेयजल ही है जिसकी आवश्यकता प्राणियों पशु पिक्षयों एवं फसलों को समान रूप से विभिन्न पिरमाणों में पड़ती है। समग्र शुद्ध जल की उपलब्धता ग्लेशियरों, निदयों, सरोवरों, झीलों तालाबों, विभिन्न प्रकार की अन्य जल संग्रहण संरचनाओं और भूजल में विभिन्न रूपों यथा ठोस द्रव्य और गैस वायु में उपस्थित जलवाष्य में होते हुए भी समग्र जल के पिरवार में इसका स्थान मात्र 0.1% ही है. आज धरती पर हम मनुष्यों की संख्या लगभग 9 अरब हो चुकी है जो लगातार बढ़ती ही जा रही है। वहीं पर वैश्विक ऊष्मण और मनुष्य के दुष्कृत्यों के फलस्वरूप वातावरण परिवर्तन के कारण मूसलाधार वर्षा, बाढ़, अनावृष्टि, सूखा, चक्रवाती आंधियां और तूफान तथा इन से उत्पन्न होने वाली विभिन्न परिस्थितयों यथा मैदानी क्षेत्रों में घनघोर जल उत्प्लावन, निदयों के किनारों की भूमि का कटान, भूमि धसान और सरिता तीर अपरदन व पहाड़ों में भूस्खलन एवं उससे उत्पन्न होने

वाली विभिन्न विभीषिकायेँ मानव के जीवन की कठिनाइयों को लगातार बढ़ा ही रहे हैं। विगत कुछ वर्षों में वर्षा और अनावृष्टि की तीव्रता और बारंबारता में अपेक्षाकृत कुछ अधिक ही वृद्धि देखी जा रही है। वहीं पर गर्मियों के मौसम में बहुत से स्थानों पर जीव जंतुओं, मनुष्यों के पीने योग्य जल तथा सिंचन हेतु उपलब्ध जल की तीव्र कमी भी देखी जा रही है।

देश में आज कल की नई पीढ़ी की किंचित अज्ञानता के द्वारा जल के प्रति निराशापूर्ण आचरण, असिहण्णुतापूर्ण व्यवहार और जल प्रदूषण के सापेक्ष उदासीनता के कारण हमारे स्वच्छ और शुद्ध जल के स्रोत एवं संसाधन हैं वह भी प्रदूषित होकर अनुपयुक्त हो रहे हैं; तथा अशुद्ध जलपान के कारण क्या मनुष्य और क्या पशुपक्षी, क्या भूमि और फसलें, क्या जलचर अर्थात हम सभी सभी अनेकों प्रकार के कष्ट और पीड़ा को भोगने के लिए बाध्य होना पड़ रहा है। ऐसे में हमारा यह नैतिक व सामाजिक दायित्व भी हो जाता है कि जो ज्ञान साहित्य, शोध और विज्ञान के द्वारा हमें पीढ़ी दर पीढ़ी उपलब्ध हो पाया है उसे जनमानस तक उनकी मातृभाषा में प्रचारित एवं प्रसारित करके सभी को जल के बारे में संवेदना, संचेतना और सिहण्णुता प्रदान की जाए और जल संसाधन के संरक्षण व संवर्धन के साथ-साथ जल को प्रदूषित होने से बचाने के लिए विभिन्न प्रकार के कार्यों को संपादित करने के लिए उत्प्रेरित/आंदोलित भी किया जाए। इस महान उद्देश्य की प्राप्ति हेतु जल प्रौद्योगिकी केंद्र, भा. कृ. अनु. प.-भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली -110012 (भारत), के द्वारा इस दिशा में उठाए गए एक प्रमुख कदम के रूप में यह त्रैमासिक पत्रिका विभिन्न माध्यमों से अपना योगदान करेगी। शोध आलेख विचारोत्तेजक लेख, कथा काहिनयों, लघु-दीर्घ नई - पुरानी कविताओं, चित्रों, पेईटिंग्स और फोटोग्राफ्स के कार्यों के माध्यम से जल संरक्षण और और जल प्रबंधन तकनीकी ज्ञान सम्प्रेषण के द्वारा समाज के विभिन्न वर्गों तथा विद्यार्थियों, शोधकर्ताओं, खेती के मजदूरों, किसानों, औद्योगिक प्रतिष्ठानों अर्थात सभी को उन्नत जल तकनीकी ज्ञान एवं संदेश पहुंचा सकें तािक इसे सामान्य व्यवहर बनाया जा सके।

प्रथम प्रयास के रूप में "जल सुरक्षा" का प्रवेशांक आप सब के कर कमलों में देते हुए मुझे अत्यंत आनंद की अनुभूति हो रही है। आशा ही नहीं है मेरा पूर्ण विश्वास भी है कि इस महान यज्ञ में सिमधा डालने वाला हमारा समेत प्रयास सफल हो कर शुभाशुभ फलदाई सिद्ध होगा। इसी अभिलाषा और आकांक्षा के साथ कि "जल सुरक्षा" को आपका प्यार व सहयोग हमें भविष्य में भी सदा सर्वदा प्राप्त होता रहेगा।

सस्नेह आपका स्नेहाकांक्षी

दिनांक: 15 मार्च 2024

स्थान: नई दिल्ली

(अनिल कुमार मिश्र)

मुख्य संपादक

अनुक्रम

क्र. सं.	आलेख	पृष्ठ संख्या
1.	भारतीय वैदिक साहित्य में जल विमर्श	1-7
	अनिल कुमार मिश्र	
2.	आईओटी आधारित स्मार्ट सिंचाई प्रणाली	8-11
	मोनलिशा प्रमाणिक, मनोज ख़न्ना, विजय प्रजापति, सुषमा सुधीश्री और राजीव रंजन	
3.	सिंचाई के लिए सौर ऊर्जा का उपयोग	12-14
	विजय प्रजापति, मनोज खन्ना, मोनालिशा प्रमाणिक, सुसमा सुधिश्री, मान सिंह, एवं पी. एस.	
	ब्रह्मानंद	
4.	भारतीय कृषि प्रक्षेत्रों पर उन्नत जल प्रबंधन की आवश्यकता : वर्तमान और भविष्य की	15-22
	चुनौतियों और उपलब्ध तकनीकी समाधानों का आंकलन	
	अनिल कुमार मिश्र	
5.	भारत में सतत भूजल संसाधन प्रबंधन: तकनीकी और नीति विकल्प	23-25
	एस.के. श्रीवास्तव और प्रभात किशोर	
6.	उचित समय पर निश्चित सिंचाई सुविधा किसानों की आय दो गुना करने में सहायक	26-29
	बीरपाल सिंह	
7.	मोटे अनाजों का बेहतर उत्पादन	30-36
	वीरेन्द्र कुमार, पी. एस. ब्रह्मानंद एवं अनिल कुमार मिश्र	
8.	मक्के की विभिन्न क़िस्मों में प्रकाश संश्लेषक संबंधी लक्षण और उपज पर सूखे के तनाव	37-41
	का प्रभाव	
	नीता द्विवेदी, पी. एस. ब्रह्मानंद, अनिल कुमार मिश्र, रोसिन के. जी, बिपिन कुमार और सर्वेंद्र	
	कुमार	
9.	भारत के नहरी सिंचित क्षेत्रों में उन्न्त जल प्रबंधन : आधुनिकीकरण की आवश्यकता	42-45
	अमित कुमार, अनिल कुमार मिश्र, डी. के. सिंह और तृप्तीमायी सुना	
10.	नदियों को आपस में जोड़ने का भारतीय कृषि पर प्रभाव	46-49
	तृप्तीमायी सुना, अनिल कुमार मिश्र, डी. के. सिंह, अमित कुमार और प्रदोष कुमार परमगुरु	
11.	बागवानी फसलों में जलवायु स्मार्ट जल प्रबंधन	50-52
	तनुश्री साहू, सुनील कुमार, देबाशीष होता, मीनाक्षी बदु	
12.	सिंचाई निर्धारण विधियाँ और उनका कृषि में उपयोग	53-54
	बिपिन कुमार, शालू, हिमानी बिष्ट, विजय प्रजापति, नीता दिवेदी और पी.एस. ब्रह्मानंद	
13.	डिजिटल कृषि: स्मार्ट फार्मिंग का नया तरीका	55-60
	मोनालिशा प्रमाणिक, मनोज खन्ना, विजय प्रजापति, राजीव रंजन	
14.	जल संबंधित प्रश्नोत्तरी	61
	पी.एस. ब्रह्मानंद	
15.	जल और पौधे	62
	पी.एस. ब्रह्मानंद	
16.	सिंचाई जल परीक्षण सूचना एवं सुझाव का प्रारूप	63
	धारा सिंह गुर्जर	
17.	जल का वरदान	64
	शशिकान्त सिन्हा	

भारतीय वैदिक साहित्य में जल विमर्श

अनिल कुमार मिश्र

भारतीय वैदिक साहित्य के संस्कृत वाङ्मय को दो भागों में बांटा जा सकता है- वैदिक साहित्य तथा लौकिक साहित्य। छान्दोग्य उपनिषद तथा बौद्ध-ग्रंथों में पुराण को पंचम वेद कहा गया है। 'अथर्वसंहिता' के अनुसार ऋक्, साम, छन्द, पुराण तथा यजुः सब एक साथ आविर्भूत हुए। पुराण के संबंध में 'शतपथ' ब्राह्मण और 'बृहदारण्यक' उपनिषद में कहा गया है कि - 'जैसे गीली लकड़ी की आग से धुआं निकलता है, उसी प्रकार इस महाभूत से ऋग्वेद, यजुर्वेद, सामवेद, अथर्ववेद, इतिहास, पुराण, विद्या, उपनिषद, श्लोक, सूत्र, व्याख्यान निःश्वास रूप में उद्धत हुए।' वेद सनातन धर्म के सर्वप्रामाणिक तथा प्राचीन ग्रंथ तो हैं ही, परंतु वेद को परिवर्धित करने वाला पुराण ही है। इसलिए इसे 'वेद का पूरक' भी कहा जाता है। वैदिक साहित्य और लौकिक साहित्य को जोड़ने की कड़ी 'पुराण साहित्य' है। भारतीय साहित्य में पुराणों को भी वेदों के समान ही प्राचीन बताया गया है। प्राचीन भक्ति ग्रंथों के रूप में पुराण का महत्व सर्वाधिक है। यह हिन्दओं के धर्म संबंधी आख्यान ग्रंथ हैं, जिनमें विषयों की कोई सीमा नहीं है। इसमें ब्रह्माण्डविद्या, राजाओं, नायकों, देवी-देवताओं, ऋषि-मुनियों की वंशावली, लोक कथायें, तीर्थयात्रा, मन्दिर, चिकित्सा, खगोलशास्त्र, व्याकरण, खनिज विज्ञान, हास्य, प्रेमकथाओं आदि का वर्णन प्राप्त होता है। इसके अतिरिक्त पुराण में कल्पित कथाओं की विचित्रता और इसके रोचक वर्णन द्वारा सांप्रदायिक व साधारण उपदेश भी प्राप्त होते हैं। भारतीय सभ्यता तथा संस्कृति को जनसाधारण तक पहुंचाने का श्रेय इन्हीं पुराणों को जाता है। पुराणों का समय वेदकाल से प्रारम्भ होकर सोलहवीं शताब्दी के अंतिम कालखंड तक माना गया है। इस लेख में हम हमारे वेदों और उपवेदों में जल के महत्व और प्रकार के बारे में चर्चा करेंगे।

भारतीय वैदिक साहित्य में जल की महिमा का विशद वर्णन प्राप्त होता है। जिसका अर्थ है की हमारी सनातन धर्म और संस्कृति के प्रणेताओं को जल के महतत्व और उसके प्रबंधन का सम्पूर्ण और सम्यक ज्ञान अवश्य था, जिस का आज-कल की पीढ़ी के संस्कृत भाषा ज्ञान से अनभिज्ञ

जल प्रौद्योगिकी केंद्र

भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल: dranilkumarmishra1@gmail.com जन मानस को भान तक नहीं है। सृष्टि के प्रारंभ से ही प्राणियों के लिए जल का विशेष महत्व रहा है. हिंदू धर्म के आदिग्रंथों और पुराणों में भी जल के महत्व और निर्मल महिमा का वर्णन किया गया है। वैदिक साहित्य में सदैव यह माना गया है कि हमारा शरीर पंच महाभूतों अर्थात पंचतत्वों से बना है जिसमें एक तत्व जल भी है। ऋग्वेद का नदी सूक्त नदियों के संरक्षण एवं संवर्धन की कामना का संदेश देते हैं। प्राचीन भारतीय सभ्यता में 'जल ही जीवन है' का सिद्धांत प्रतिपादित किया गया है। आदिग्रंथ और पुराणों में जल की महिमा इस प्रकार से वर्णित है कि मनुष्य का शरीर मुख्य रूप से जल से बना है, जो लगभग 70% है। उपलब्ध आँकड़ों के अनुसार, पृथ्वी एकमात्र ऐसा ग्रह है जहाँ 70% जल है, लेकिन केवल थोड़ी मात्रा में ताज़ा जल है। यह एक अद्भुत कहावत है "जल ही जीवन है"। वेदों और उपवेदों में जल का सुन्दर वर्णन है। चूँकि जल अमृत और जीवन का स्रोत है, साथ ही मानव सभ्यता के लिए आवश्यक भी है, मानव जीवन, और हमारी अर्थव्यवस्था और कृषि के लिए, जल और उसके संरक्षण का भारतीय संस्कृति और लोकाचार में अनिवार्य रूप से केंद्रीय स्थान रहा है।

वैदिक साहित्य में जल की उत्पत्ति का सिद्धांत "मित्रं हुवे पूतदक्षं वरुणं च रिशादसम्। धियं घृताचीं साधन्ता॥"

-ऋग्वेद,1/2/7

इस मंत्र का भावानुवाद है कि- "घृत के समान प्राणप्रद वृष्टि सम्पन्न कराने वाले 'मित्र' और 'वरुण' देवों का हम आह्वान करते हैं। मित्र हमें बलशाली बनायें तथा वरुणदेव हमारे हिंसक शत्रुओ का नाश करें।" जलविज्ञान की अपेक्षा से इस मंत्र में मंत्रद्रष्टा ऋषि द्वारा यज्ञ का सम्पादन करते हुए कहा जा रहा है कि-'पदार्थों को पवित्र करने में दक्ष होने से 'मित्र' अर्थात् 'हाइड्रोजन' वायु को और रोग का भक्षण करने वाली और स्वास्थ्यप्रद होने से सबके लिए लाभकारी 'वरुण' अर्थात् 'आक्सीजन' वायु को मैं अपने पास बुलाता हूँ।" क्योंकि ये दोनों (घृताचीम् +धियम्) जल का निर्माण करने वाले देव हैं। आधुनिक जलविज्ञान की शब्दावली में कहें तो इस वैदिक ऋचा में वैदिक जल की उत्पत्ति का सिद्धांत बताया गया है और साथ ही उस जल की उत्पत्ति के लिए आधुनिक मानसून विज्ञान की मान्यता के अनुसार 'हाइड्रॉलोजिकल साइकल' यानी वृष्टिचक्र को धरती में जल उत्पत्ति का कारण

माना गया है। पाश्चात्य विद्वान भी इस मंत्र की जल वैज्ञानिक और मानसून वैज्ञानिक व्याख्या से सहमत होते हुए कहते हैं कि वस्तुतः 'मित्र' अर्थात् सूर्य शुद्ध शक्ति का प्रतीक है और ' 'वरुण' 'शत्रु (रोगों) का भक्षक' कहा गया है और इस मंत्र में इन दोनों देवों का धरती पर जल बरसाने के प्रयोजन से ही संयुक्त रूप से आह्वान किया गया है। एक विद्वान् ने सायण भाष्य के आधार पर मंत्र की व्याख्या करते हुए यह स्पष्टीकरण भी किया है कि इन दोनों देवशक्तियों के संयुक्त प्रयास से ही वर्षा के द्वारा आकाश से पृथ्वी में जल का बहाव उत्पन्न होता है। मित्र अपने सामान्य अर्थ में, सूर्य का ही एक नाम है और जल पर वरुण का स्वामित्व माना जाता है। विल्सन ने यहां पर मित्र को सूर्य का विशेषण मानते हुए उसके द्वारा प्रत्यक्ष रूप से जल बहाने की प्रक्रिया माना है और वरुण वाष्पीकरण द्वारा अप्रत्यक्ष रूप से वर्षा का कारण बताया गया है। इस प्रकार ऋग्वेद के इस मंत्र के अनुसार वायुमंडल में दो देवताओं 'मित्र' और 'वरुण' के संयुक्त प्रयासों के परिणाम स्वरूप ही वाष्प संघनित होने के बाद समुद्र का जल 'रिसाइकल' हो कर फिर से वर्षा जल के रूप में नीचे धरती पर अवतरित होता है। आध्निक जलविज्ञान की शब्दावली में कहें तो इस वैदिक ऋचा में वैदिक जल की उत्पत्ति का सिद्धांत बताया गया है और साथ ही उस जल की उत्पत्ति के लिए आध्निक मानस्न विज्ञान की मान्यता के अनुसार 'हाइड्रॉलोजिकल साइकल' यानी वृष्टिचक्र को धरती में जल उत्पत्ति का कारण माना गया

ऋग्वेद में इस जल वैज्ञानिक तथ्य का उल्लेख है कि सूर्य ही जल को उत्पन्न करने वाला है। वह अपनी किरणों से जल को भाप बना कर, उसे बादल के रूप में बदल देता है। इस प्रकार बादल बरस कर फिर जल के रूप में धरती पर आ जाता है। ऋग्वेद के एक मंत्र में जल के ऊपर जाने और उसके बाद नीचे आकर पृथ्वी में वर्षा करने के सालाना जलचक्र का उल्लेख आया है, जिसे आधुनिक जलविज्ञान में 'हाइड्रोजिकिल साइकल' भी कहते हैं —

"समानमेतदुदकमुच्चैत्यव चाहभिः. भूमिं पर्जन्या जिन्वन्ति दिवं जिन्वन्त्यग्नयः॥" – ऋग्वेद,1/164/51

अर्थात् जो जल ग्रीष्म ऋतु में बहुत दिनों तक ऊपर की ओर जाता रहता है यानी सूर्य के ताप से कण कण होकर,वायु की सहायता से ऊपर उठकर और मेघ बनकर अन्तरिक्ष में ठहरता है। उसके बाद वही जल वर्षाकाल के आने पर नीचे भूमि पर बरसता है। इसी प्रक्रिया से मेघ भूमि को तृप्त करते हैं और अग्नि द्वारा बिजली आदि चमकाकर अन्तरिक्ष को भी तृप्त करते हैं। इस वैदिक मंत्र का आशय यह है कि यज्ञ आदि अनुष्ठानों द्वारा वर्षा होने से भूमि पर उत्पन्न जीव प्राण धारण करते हैं और अग्नि से अन्तरिक्ष, वायु, मेघ आदि की परिशुद्धि होती है। वैदिक मंत्रों में मानसूनी वर्षा के लिए सूर्यदेव का विशेष आभार प्रकट किया गया है क्योंकि जलों के केन्द्र में रहकर वाष्पीकरण करने,वृष्टि के सहायक वृक्ष-वनस्पतियों को पुष्ट बनाने तथा जल की वर्षा करके पृथ्वी को शस्य श्यामला बनाने में सूर्य की ही अहम भूमिका मानी गई है –

"दिव्यं सुपर्णं वायसं बृहन्तमपां गर्भं दर्शतमोषधीनाम्। अभीपतो वृष्टिभिस्तर्पयन्तंसरस्वन्तमवसे जोहवीमि॥" – ऋग्वेद, 1.164.52

समस्त प्राणियों के जीवन धारण करने के लिए जल का महत्व

प्राचीन भारतीय संस्कृति में जल को जीवन माना गया है-"जलमेव जीवनम् अस्तु"। अर्थात जल ही जीवन है। वेदों में जल को औषधीय गुणयुक्त कहा गया है। हमारे देश के प्राचीन वैदिक साहित्य में जल के स्रोतों, जल की गुणवत्ता तथा उसके संरक्षण के लिए बहुत अधिक बल दिया गया है। प्राचीन भारतीय संस्कृति में माना गया है कि ब्रह्मण्ड में जितने भी प्रकार का जल है उसका हमें सरंक्षण करना चाहिए। वेदों में कहा गया है कि वर्षा के होने से जल में प्रवाह आता है और नदी के रूप में जल प्रवाह को प्राप्त करता है। प्रवाह युक्त जल को हमारे संस्कृति में पवित्र माना गया है। तभी तो हमारी संस्कृति में नदियों को माता के समान तथा पूजनीय माना गया है। निदयों की पवित्रता के संबंधु में वैदिक साहित्य में कहा गया है कि ऐसी नदी जो पर्वत से निकल कर समुद्र तक प्रवाहित होती है वह पवित्रा होती है। इस बात के माध्यम से वैदिक ऋषि हमें संदेश देना चाहते हैं कि नदियों के अबाध् प्रवाह को सरंक्षित किया जाना चाहिए। नदियों को बहने देना चाहिए। ऋग्वेद के ऋषि का कथन है कि हे मनुष्यों! अमृत तुल्य तथा गुणकारी जल का सही प्रयोग करने वाले बनो। जल की प्रशंसा और स्तुति करने के लिए सदैव ही तैयार रहो-

अप्स्वडन्तरमृतमप्सु भेषजमपामुत प्रशस्तये देवा भक्त वाजिन:।

- ऋग्वेद 1/23/19

वैदिक वाङ्ग्मय में वर्णित पांच प्रकार के प्राकृतिक जलस्रोत

जलविज्ञान की दृष्टि से ऋग्वेद के एक मंत्र में जल प्राप्ति के पांच प्रमुख प्रकार बताए गए हैं-

> "या आपो दिव्य उत वा स्रवन्ति , खनित्रिमा उत वा याः स्वयंजाः।

समुद्रार्था याः शुचयः पावकास्ता , आपो देवीरिह मामवन्तु॥"

-ऋग्वेद,7/49/2

1- 'दिव्या आपः' – वर्षा से प्राप्त जल

2- 'स्रवन्त्यः आपः' – नदियों से प्राप्त जल

3- 'खिनत्रिमा आपः' – खुदाई करके कुओं, बावडियों से प्राप्त जल

4- 'स्वयंजाः आपः' – स्वयं उत्पन्न झरनों का जल

5- 'समुद्रार्थाः आपः'- समुद्रों से प्राप्त जल -

वैदिक कालीन जलविज्ञान के शोध और प्रायोगिक स्तर पर जल उपलब्धि की जैसे जैसे दिशाएं उद्घाटित होती गईं जल के विविध प्रकारों की संख्या भी बढ़ती गई. यही कारण है कि अथर्ववेद (19/2) में जल के दस और यजुर्वेद (22/25) में ग्यारह भेदों का नामोल्लेख मिलता है। वैदिक कालीन कृषि व्यवस्था आज की तरह पूर्ण रूप से मानस्नों की वर्षा पर निर्भर थी. समय पर वर्षा न होने पर अकाल तथा सूखे से बचने के लिए वैदिक काल के किसानों ने पेय जल और सिंचाई के जल की आपूर्ति हेतु कृत्रिम जलसंचयन प्रणालियों जैसे नहरों, तालाबों, झरनों, कुओं आदि के निर्माण हेतु वैज्ञानिक तकनीक को सीख लिया था। शायद हमें या हमारे जलवैज्ञानिकों को कम ही मालूम होगा कि ऋग्वेद में कुएं, तालाब, जैसे जलाशय के लिए 'अवत' शब्द का प्रयोग बार बार आया है। इसी 'अवत' नामक कृत्रिम जलाशय में जल भण्डारण करके पेय जल और सिंचाई हेत् जल का उपयोग किया जाता था-

"सिञ्चामहा अवतमुद्रिणं वयम्." -ऋग्वेद,10/101/5

जलाशय के लिए वैदिक 'सुवरत्रम्' शब्द का प्रयोग बताता है कि रस्सी की सहायता से कुओं में से जल निकाला जाता था-

"इष्कृताहावमवतं सुवरत्रं सुषेचेनम्।" ऋग्वेद,10/101/6

वैदिक कालीन कूपों के विविध प्रकार

ऋग्वेद में सिंचाई हेतु प्रयोग में लाए जाने वाली अनेक जल संचयन प्रणालियों का भी उल्लेख मिलता है जिनमें—'कूचक्र' (10/102/11) तथा 'अश्मचक्र' (10/101/7) की पहचान आधुनिक ढेंकुल और पक्के कुएं के रूप में की जा सकती है। वैदिक काल की उपर्युक्त सभी जल संचयन सम्बन्धी संज्ञाओं के विषय में निश्चित रूप से नहीं कहा जा सकता है कि ये सभी नाम 'कूप' के ही पर्यायवाची हों। सम्भव है कि ये 'काट', 'खात', 'अवत', 'ऋश्यदात्' कुएं आदि न होकर कृत्रिम रूप से बनाए गए गड़ढे या खाइयां

हों जिन्हें सरोवर या तालाब के निकट जल उलीचने के प्रयोग में लाया जाता होगा। ऐसी भी संभावना की जा सकती है कि ये उस समय के किसानों द्वारा ऊंचे ऊचे पहाड़ों की समतल भूमि में खोदी गई गहरी खाइयां हों जिनमें वर्षा के जल का भंडारण किया जाता होगा तथा पशुओं के जल पीने की व्यवस्था इन्हीं जलाशयों के माध्यम से की जाती होगी। ऋग्वेद में कूप इत्यादि विभिन्न जल संस्थानों के एक दर्जन के लगभग उल्लेख मिलते हैं जिनके नाम इस प्रकार थे – 'कूप' (1/105/17), 'कर्त' (2/34/6), 'वव्र' (5/32/8), 'काट (1/106/6), 'खात' (4/50/3), 'अवत' (4/17/6), 'क्रिवि' (5/44/4), 'उत्स' (2/16/7), 'कारोतर (1/116/7), 'ऋश्यदात् (10/39/8), 'केवट' (6/54/7) आदि।

वैदिक साहित्य में जल स्रोतों, जल के महत्व, उसकी गुणवत्ता एवं संरक्षण की बात बारबार की गई है। जल के औषधीय गुणों की चर्चा आयुर्वेद (जो एक वेदांग है) के अतिरिक्त ऋग्वेद एवं अथर्ववेद में भी मिलती है। भारतीय कृषिविज्ञान की महत्त्वपूर्ण रचना 'कृषिपाराशर' में तो यहाँ तक कहा गया है कि सम्पूर्ण कृषि का मूल कारण वर्षा ही है। वर्षा ही जन-जीवन का भी मूल है अतएव मौसम वैज्ञानिकों को वर्षा के पूर्वानुमान का ज्ञान होना बहुत आवशयक माना गया है —

"वृष्टिमूला कृषि: सर्वा वृष्टिमूलं च जीवनम्. तस्मादादौ प्रयत्नेन वृष्टिज्ञानं समाचरेत.."

– कृषिपाराशर, 2.1

वैदिक वाङ्मय में जल का धार्मिक महत्त्व

भारतीय संस्कृति पूजा प्रधान है। यहाँ किसी भी कार्य का प्रारम्भ पूजा से होता है और प्रत्येक कार्य का विसर्जन भी पूजा से ही होता है। पूजा हेतु सर्वप्रथम, पिवत्रीकरण की आवश्यकता होती है और पिवत्रीकरण के लिए जल की आवश्यकता होती है। इसी प्रकार पूजा का विसर्जन, शान्ति - पाठ से होता है और शान्ति - पाठ में जब मंत्रों का उच्चारण किया जाता है, तो पिवत्र जल का अभिसिंचन किया जाता है, इस प्रकार जल के बिना, किसी भी तरह की पूजा सम्भव नहीं है। हिंदू धर्म में जल का विशेष धार्मिक महत्व है। इसलिए किसी भी पूजा-पाठ के प्रारम्भ में ही सबसे पहले शुद्ध जल का छिड़काव कर शुद्धिकरण की जाती है और जल से भरा कलश स्थापित किया जाता है। हिंदू धर्म में नदी को भी मां तुल्य मानकर अराधना की जाती है। पूजा-पाठ के साथ ही कई मंत्र-श्लोक में भी जल का महत्व मिलता है। आदिग्रंथों और पुराणों में भी जल के महत्व का

वर्णन किया गया है। इतनी लंबी अवधि में भी पर्यावरण के प्रित पर्याप्त सजगता एवं जागरुकता का रुझान मिलता है। इसके अलावा इतिहास के पृष्ठों में दबे तमाम तथ्यों का उभारने पर पता चलता है कि इन दिनों भी पर्यावरण को कानूनी संरक्षण प्राप्त था।

" इदमाप: प्र वहत यत् किं च दुरितं मयि यद्वाहमभिदुद्रोह यद्वा शेष उतानृतम्॥"

- ऋग्वेद 10/ 2/ 8/

हे जल देवता ! मुझसे जो भी पाप हुआ हो, उसे तुम दूर बहा दो अथवा मुझसे जो भी द्रोह हुआ हो, मेरे किसी कृत्य से किसी को पीड़ा हुई हो अथवा मैंने किसी को गालियाँ दी हों, अथवा असत्य भाषण किया हो, तो वह सब भी दूर बहा दो। जल में अखण्ड प्रवाह, दया, करुणा, उदारता, परोपकार और शीतलता, ये सभी गुण विद्यमान रहते हैं। मनुष्य कितना भी दुखी क्यों न हो, ठंडे जल से स्नान करते ही वह शान्त हो जाता है। जल ही जीवन है। जल मानव को पुण्य - कर्म करने की प्रेरणा देता है।

वैदिक परंपराओं में जल संरक्षण का महत्व

हमारी वैदिक परंपराओं में जल संरक्षण का विशेष महत्व है। सभी निदयों के जल को पिवत्रतम मानते हुये निदयों को माता गंगा, माता यमुना और कई अन्य नामों से भी पूजा जाता है। इसी कारण निदयों के जल को सर्वाधिक संरक्षणीय भी माना गया है क्योंकि वे कृषि क्षेत्र को सींचती है जिससे प्राणिमात्र का जीवन चलता है। निदयों का बहता जल शुभ माना गया है। वेद में मानव जीवन को 'कृषि - जीवन' कहा गया है और इसीलिए, जलश्रोतों से हमारा रागात्मक सम्बन्ध रहा है। निदयों को हमने, देवी - स्वरूपा, माता की संज्ञा से अभिहित किया है। 'ऋग्वेद' की इस ऋचा में 'सरस्वती' नदी की महिमा गाई गई है -

" अम्बितमे नदीतमे देवितमे सरस्वति । अप्रशस्ता इव स्मसि प्रशस्तिमंब नस्कृधि ॥ "

-ऋग्वेद / 2/8/14

हे सर्वोत्तम माते सरस्वती ! तू सर्वोत्तम नदी के समान है। जिन नदियों का प्रवाह प्रकट है, वे गंगा - यमुना जैसी, श्रेष्ठ नदियाँ हैं, परन्तु तेरा प्रवाह गुप्त है, इसलिए तू श्रेष्ठ्तम है। तू सभी देवताओं में श्रेष्ठ, आलोक प्रदाता है। हमारा जीवन अप्रशस्त जैसा बन गया है। हे माता ! तू उसे प्रशस्त कर। हम उपेक्षित हैं, निन्दित हैं। हे माता ! तू हमारा पथ प्रशस्त कर। इसलिए नदियों के जल को कभी भी किसी पकार से प्रदूषित नहीं करना चाहिए।

निदयां जल का वहन करती हुई, सभी प्राणिमात्र को तृप्त करती हैं। भोजनादि प्रदान करती हैं। आनन्द को बढ़ाती हैं। जल संरक्षण पर बल देते हुए ऋग्वेद में कहा गया है कि जल हमारी माता जैसे है। जल घृत के समान हमें शक्तिशाली और उत्तम बनाये। इस तरह के जल जिस रूप में जहां कहीं भी हो वे रक्षा करने योग्य हैं.अथर्ववेद में सप्तसैन्ध्व निदयों का उल्लेख मिलता है। ये सात निदयां निम्न है- 1. सिंधु नदी, 2. विपाशा या व्यास नदी, 3. शतुद्रि या सतलज नदी, 4. वितस्ता या झेलम नदी, 5. असिक्की या चेन्नब अथवा चिनाब नदी और सबसे महान सबसे पवित्र 6. सरस्वती नदी (यह नदी आज कल विलुप्त हो चुकी है)।

आपो अस्मान्मातरः शुन्ध्यन्तु द्यृतेन ना द्यृत्प्वः पुनन्तु। - ऋग्वेद 10.17.10

ऋग्वेद में इन निदयों को माता के समान सम्मान दिया गया है-

ता अस्मश्यं पमसा पिन्वमाना शिवादेवीरशिवद। भवन्त सर्वा नध्ः अशिमिहा भवन्तु।

-ऋग्वेद 7/50/4

जल संरक्षण के लिए वेदों में वर्षा जल तथा बहते हुए जल के विषय में कहा गया है कि हे मनुष्य! वर्षा जल तथा अन्य स्रोतों से निकलने वाला जल जैसे कुएं, बावडियां आदि तथा फैले हुए जल तालाब आदि के जल में बहुत पोषण होता है। इस बात को तुम्हें जानना चाहिए तथा इस प्रकार के पोषक युक्त जल का प्रयोग करके वेगवान और शक्तिमान बनना चाहिए-

अपामहं दिव्यानामपां स्रोतस्यानाम् अपामह प्रण्जनेदश्चा भवय वाजिनः।

-अथर्ववेद 19/1/4

अर्थात वर्षा के जल को संरक्षित करना चाहिए क्योंकि यह सर्वाध्कि शुद्ध जल होता है। इस विषय में अथर्ववेद में कहा गया है कि-वर्षा का जल हमारे लिए कल्याणकारी है-

शिवा नः सन्तु वार्षिकीः।

-अथर्ववेद 1/6/4

वैदिक काल में जल प्रबंधन

प्राचीन भारतीय वैदिक संस्कृति के अध्ययन से ज्ञात होता है कि वैदिक काल में जल प्रबंधन का कार्य वृहत् एवं अति उत्तम विधियों से किया जाता था। पौराणिक मान्यताओं के अनुसार जल की उत्पत्ति 'नर' (पुरूशत्रपरब्रहा्र) से हुई है। अतः उसका प्राचीन नाम 'नार' है। वह (नर) 'नार' में ही निवास करता है। अतः उस नर को नारायण कहते है। विष्णु पुराण के अनुसार संसार के सृष्टि-

कर्ता ब्रह्मा का सबसे पहला नाम 'नारायण' है तथा दूसरे शब्दों में भगवान का जलमय रूप ही संसार की उत्पत्ति का कारण है। 'जल ही जीवन है' इसीलिए जल की बर्बादी को रोकना, समुचित जल प्रबंधन का कार्य पर्याप्त मात्रा में करना और भी महत्वपूर्ण हो जाता है। प्रस्तुत शोध पत्र में वैदिक काल में किये गये जल प्रबंधन के कार्यों की व्याख्या है। मनुष्य इस सर्व सिद्ध सूत्र को पूर्णतः भुला बैठा है कि जल नहीं तो जीव या जीवन कुछ नही होगा; जबिक भारत देश में आज भी यत्र-तत्र वैदिक काल की जल संरक्षण और संभरण की विभिन्न व्यवस्थायें देखी जा सकती हैं और उन्हीं आयामों को अल्प परिवर्तनों के साथ अपना कर वर्तमान पर्यावरणीय समस्याओं से मुक्ति पायी जा सकती है। वैदिक काल में जल प्रबंधन का कार्य प्राकृतिक और कृत्रिम दोनों ही स्रोत से करते थे। अतः वैदिक काल के जल प्रबंधन की आचार संहिता एवं उसके क्रियान्वयन के तौर तरीकों की खोज का अध्ययन करना भी आवश्यक हो जाता है। वास्तव में किसी भी राष्ट्र की अर्थव्यवस्था की धुरी पेय जल एवं सिंचाई प्रबंधन होता है जो कि जल प्रबंधन की मूलभूत विषय वस्तु है, क्योंकि इस पर ही कृषि, औद्योगिक एवं तकनीकी प्रगति निर्भर करती है।

सिंधु घाटी सभ्यता के युग में वैदिक काल के लोगों की जीवनशैली ने पर्यावरण प्रेम को पूर्ण रूपेण दर्शाया है। वे विशेष रूप से वृक्ष पूजा करते थे। आर्यों और द्रविड़ों के द्वारा प्रारम्भ की गई यह प्रक्रिया एवं परंपरा बाद में भी जीवित रही। चंद्रगुप्त मौर्य के समय वन की सुरक्षा पर विशेष ध्यान दिया जाता था। कौटिल्य के अर्थशास्त्र में अभ्यारण्यों की पांच श्रेणियां होती थी। सम्राट अशोक के शासनकाल में सर्वप्रथम वन्य जीवों के संरक्षण हेत् नियम बनाए गए थे। इसके पश्चात् भी यह कार्य अनवरत रूप से चलता रहा। जब वेदों के अर्थ सामान्य जन के लिए कठिन प्रतीत होने लगे तब वेदों के सुलभ अर्थ ज्ञान के लिए वेदाङ्गों एवं पुराणों की रचना की गई। पुराण भारतीय साहित्य का गौरव ग्रंथ है। प्राचीन विद्वानों का मानना है कि यदि कोई द्विज चारों वेदों तथा उनके अंगों-उपनिषदों को भले अच्छा ज्ञाता है, यदि वह पुराण का अध्ययन नहीं करता, तो वह व्यक्ति विलक्षण-चतुर तथा शास्त्र कुशल नहीं हो सकता। चरक संहिता में आचार्य चरक ने भू जल की गुणवत्ता पर चर्चा भी की है। जल को प्रदृषित होने से बचाना चाहिए तथा हमारे प्रयास इस तरह से रहें कि जल प्रदृषित न करें। इस विषय में यजुर्वेद में कहा गया है कि जल को नष्ट मत करो-

> "मा आपो हिंसी।य् मा आपो हिंसी। -यजुर्वेद 6.22

यहां पर यजुर्वेद के प्रणेता ऋषि हमें आदेश देते हुये कहते हैं कि जल को कभी भी अनावश्यक मान कर नष्ट मत करो। यह अमूल्य निधि है। अथर्ववेद में नौ प्रकार के जलों का उल्लेख किया गया है-; परिचरा आप -प्राकृतिक झरनों से बहने वाला जल; हेमवती आपः -हिमयुक्त पर्वतों से बहने वाला जल; वर्ष्या आपः -वर्षा जल; सनिष्यदा आपः -तेज गित से बहता हुआ जल; अनूप्पा आपः - अनूप देश का जल अर्थात् ऐसे प्रदेश का जल जहां पर दलदल अधिक हो; ध्न्वन्या आपः - मरुभूमि का जल; कुम्भेभिरावृता आपः - आपः घड़ों में स्थित जल; अनभ्रयः आपः -किसी यंत्र से खोदकर निकाला गया जल, जैसे-कुएं का; उत्सया आपः - स्रोत का जल, जैसे-तालाबादि।

वैदिक - वांग्मय में जल के औषधीय महत्त्व

वैदिक - वांग्मय में जल के महत्त्व को सर्वात्मना स्वीकार किया गया है और जल की गरिमा - महिमा का बखान, श्रुतियों में सर्वत्र किया गया है।

"रूपरसस्पर्शवत्य आपोद्रवा: स्निग्धा:॥2॥"

वैशेषिक दर्शन, द्वितीय अध्याय, प्र.आ. जल तत्व में रूप, रस और स्पर्श, इन तीन गुणों का समावेश है। जल, स्निग्ध होने के साथ - साथ प्रवाहित भी होता है। प्रगट स्वरूप होने के कारण जल रूपवान भी है। जल को मुख में डालने पर, शीतल, गर्म, खारा एवं मधुर आदि का, रसास्वादन होने से, यह रस है। जल का स्पर्श करने पर, उसके शीत और उष्ण होने का पता चलता है इसलिए जल, स्पर्श गुण से सम्पन्न है और अग्नि तथा वायु के गुणों का सम्मिश्रण भी है। जल का उपयोग चिकित्सा के लिए भी किया जाता रहा है, जैसा कि " यजुर्वेद " में कहा गया है -

" युष्माSइन्द्रोSवृणीत वृत्रतूर्य्ये यूयिमन्द्रमवृणीध्वं वृत्रतूर्य्ये प्रोक्षिता स्था अग्नये त्वा जुष्टं प्रोक्षाम्यग्नीषोमाभ्यां त्वा जुष्टं प्रोक्षािम। दैव्याय कर्मणे शुन्धध्वं देवयज्यायै यद्वोSशुध्दा: पराजघ्नुरिदं वस्तच्छु न्धािम॥13॥"

यजुर्वेद प्रथम अध्याय में प्रतिपादन किया गया है कि जैसे यह सूर्यलोक, मेघ के वध के लिए, जल को स्वीकार करता है, जैसे जल, वायु को स्वीकार करते हैं, वैसे ही हे मनुष्यों! तुम लोग उन जल औषधि - रसों को शुद्ध करने के लिए, मेघ के शीघ्र - वेग में, लौकिक पदार्थों का अभिसिंचन करने वाले, जल को स्वीकार करो और जैसे वे जल शुद्ध होते हैं, वैसे ही तुम भी शुद्ध हो जाओ। भगवान ने सूर्य एवं अग्नि की रचना इसलिए की, कि वे सभी पदार्थों में प्रवेश कर उनके रस एवं जल को तितर - बितर कर दें ताकि वह पुन: वायुमंडल

में जाकर और वर्षा के रूप में फिर धरती पर आ कर सबको शुचिता और सुख प्रदान कर सके।

"आपोSअस्मान् मातरः शुन्धयन्तु घृतेन नो घृतप्व: पुनन्तु।

विश्व हि रिप्रं प्रवहन्ति देवीरुदिदाभ्य: शुचिरा पूतSएिम। दीक्षातपसोस्तनूरिस तां त्वा शिवा शग्मां परिदधे भद्रं वर्णम पृष्यन्।"

- यजुर्वेद, 4/2

यजुर्वेद में कहा गया है कि मनुष्य को चाहिए कि जो सब सुखों को देने वाला, प्राणों को धारण करने वाला तथा माता के समान, पालन - पोषण करने वाला जो जल है, उससे शुचिता को प्राप्त कर, जल का शोधन करने के पश्चात ही, उसका उपयोग करना चाहिए, जिससे देह को सुंदर वर्ण, रोग - मुक्त देह प्राप्त कर सके। अनवरत उपक्रम सहित, धार्मिक अनुष्ठान करते हुए, अपने पुरुषार्थ से आनंद की प्राप्ति हो सके । वैदिक ऋषियों ने वैज्ञानिकों की तरह जल एवं वायु को प्रदूषण - मुक्त करने की बात कही है। यजुर्वेद में उन्होंने यह परामर्श भी दिया है कि हम वर्षा - जल को भी, किस प्रकार औषधीय गुणों से परिपूर्ण कर सकते हैं।

" अपो देवीरुपसृज मधुमतीरयक्ष्मार्य प्रजाभ्य:। तासामास्थानादुज्जिहतामोषधय: सुपिप्पला:।।" -यजुर्वेद / 11/38

वैदिक ऋषियों का जीवन एक प्रयोग- शाला थी। उन्होंने चिन्तन, मनन और निदिध्यासन से जो उपलिब्ध हासिल की, उसे जन- कल्याण हेतु समर्पित कर दिया।

> "अपामह दिव्यानामपां स्त्रोतस्यानाम्। अपामह प्रणेजनेSश्वा भवथ वाजिन:॥"

> > -अथर्ववेद / 19 / 4

अथर्वेद में प्रतिपादित किया गया है कि हर राजा के पास दो तरह के वैद्य होना चाहिए। एक वैद्य, सुगन्धित पदार्थों के होम से, वायु, वर्षा - जल एवं औषधियों को शुद्ध करे। दूसरा श्रेष्ठ विद्वान्, वैद्य बनकर, प्राणियों को रोग -रहित रखे, "सर्वे भवन्तु सुखिन:" हमारा आदर्श है और इस आदर्श के निर्वाह के लिए इन दोनों दायित्वों का निर्वाह अनिवार्य है।

" यस्यां समुद्र उत सिन्धुरापो यस्यामन्नं कृष्टय: संबभूवु:। यस्यामिदं जिन्वति प्राणदेजत् सा नो भूमि: पूर्व पेये दधातु॥ "

-अथर्ववेद / 12/3

सागर, नदी, कुआँ और वर्षा का जल तथा कृषि कार्य आदि से, जो मनुष्य, नाव, जहाज कला - यंत्र आदि का, विधेयात्मक प्रयोग करता है, वह सबको आनन्द प्रदान करता है। ऐसा व्यक्ति स्वत: भी श्रेष्ठ पद को प्राप्त करता है।

"शं त आपो हैमवती: शमु ते सन्तूत्स्या:। शं ते सनिष्पदा आप: शमु ते सन्तु वर्ष्या:।। " -अथर्ववेद/ 19/1

मनुष्य को चाहिए कि वह वर्षा, कुऑ, नदी और सागर के जल को, अपने खान-पान, खेती और शिल्प- कला आदि के लिए उपयोग करे एवम् अपने जीवन को सम्पूर्ण बनाए और चारों पुरुषार्थों को प्राप्त करे।

"अनभ्रय: खनमाना विप्रा गम्भीरे अंपस:।" भिषग्भ्यो भिषक्तरा आपो अच्छा वदामसि॥" -अथर्ववेद/19/3

विद्वान्, जिज्ञासु, वैद आदि तपस्वी साधक, अनेक तरह के रोगों में, जल के प्रयोग के द्वारा, जल के अनन्त गुणों की आपस में व्याख्या करें और समाज के हित में उसका भरपूर उपयोग करें। जल - चिकित्सा बहुत ही प्रभावी चिकित्सा पद्धित है, समस्त रोगों का निदान इससे सम्भव है। मनुष्य को चाहिये कि वह सागर, वर्षा, नदी, सरोवर आदि के जल को आवश्यकतानुसार चिकित्सा मे उपयोग कर के खेती के संसाधन की तरह, जल का प्रयोग करके, निरोग, वेगवान, प्रखर, एवम् बलशाली बने और समाज के हित में अपनी प्रतिभा एवम् अपने बल का समुचित उपयोग कर सके।

"ता अप: शिवा अपोSय मं करणीरप:। यथैव तप्यते मयस्तास्त आ दत्त भेषजी:॥"

-अथर्ववेद / 19/5

जल की महत्ता के विषय में , मैं इतना ही निवेदन करना अभीषट समझता हूँ कि " जल है तो कल है " इस बात को हमारे पूर्वज, भली - भांति जानते थे और यही कारण है कि उन्होंने, जल की महिमा का बखान , वेद- वांग्मय एवम् सभी धर्म- ग्रंथों में किया है। हमें जल बचाने का उपक्रम करना चाहिये। जल के महत्व को समझ कर, सावधानी - पूर्वक उसका उपयोग करना चाहिये ताकि हम अपनी भावी पीढी के लिए जल बचा कर रखें, जैसे हमारे पूर्वज हमारे लिए, जल का विशाल भंडार छोड़ कर गए हैं।

"मायो मौष घीहि ऊं सीर्घाम्नोः घाम्नो राजस्त्तो वरूण नो मुंच।" -यजुर्वेद 6/22

अर्थात हे राजन, आप अपने राज्य के स्थानों में जल और वनस्पतियों को हानि न पहुँचाओ, ऐसा उद्यम करो जिससे हम सभी को जल एवं वनस्पतियाँ सत्त रूप से प्राप्त होती रहे। उपरोक्त मंत्र ऐसे अनेक मंत्रों में एक है जिनमें जल संरक्षण एवं जल की महत्ता की बात की गई है। वैदिक

संहिताओं में विभिन्न देवताओं को सम्बोधित प्रार्थनापरक मंत्रों में भी आधुनिक जलविज्ञान और मानसून विज्ञान से सम्बन्धित अनेक ऐसी मान्यताएं और अवधारणाएं आई हैं जिन्हें आधुनिक विज्ञान की दृष्टि से भी बहुत उपयोगी और प्रासंगिक कहा जा सकता है।

भारतीय वैदिक साहित्य के प्रणेता ऋषि-मुनि जल के महत्त्व और गुणों से सर्वथा न केवल परिचित ही थे वरन वे यह भी जानते थे थे कि जल का व्यवहार किस प्रकार किया जाना है और जल की गुणवत्ता को किस प्रकार से सुनिश्चित किया जा सकता है इसी लिए उन्होंने जल को अमृत की संज्ञा प्रदान की है। जल वृष्टि के देवता इंद्र और जल संरक्षण के देवता वरुण हैं। इन की स्तुति करने के लिए अनेकों श्लोकों की रचना के गई है। आदि ग्रंथ और उत्तरोत्तर सभी ग्रन्थों में जल की महिमा का वर्णन और उस की स्तुति की गई है। अर्थात अनादि काल से जल हमारी धार्मिक और साहित्यिक संचेतना का केंद्र विंदु रहा है। इस कारण आज भी हमारा जल ज्ञान प्राचीन ऋषियों के ज्ञान से अधिक भिन्न नहीं है। अस्तु आज पुनः हम सभी पृथ्वी वासियों से जल को किसी प्रकार की क्षिति पहुंचाने अथवा संदूषित करने से बचाने की प्रार्थना करते हैं। जल की शुद्धता बनाए रखने, यथा संभव जल को संग्रहीत करने, जल के स्रोतों का संरक्षण और संवर्धन करने की प्रार्थना करते हैं ताकि प्राण तत्व के रूप में भविष्य में जल से संबन्धित किसी भी विभीषिका से मानव मात्र को बचाय जा सके इसी में हम सभी का कल्याण निहित है और भविष्य में आने वाली पीढ़ियों का सौभाग्य भी हमारे आज के सत्कर्मों का ही फल होगा।

आईओटी (इंटरनेट ऑफ थिंग्स) आधारित स्मार्ट सिंचाई प्रणाली

मोनलिशा प्रमाणिक, मनोज ख़न्ना, विजय प्रजापति, सुषमा सुधीश्री और राजीव रंजन

आधुनिक तकनीकी के विकास ने कृषि क्षेत्र में भी अनेक बदलाव लाए हैं। आईओटी एक ऐसी तकनीक है जिसने कृषि क्षेत्र में भी अद्वितीय सुविधाएँ प्रदान की हैं। आईओटी की मदद से स्मार्ट सिंचाई प्रणालियों का विकास किया गया है जिनसे किसान अपने खेतों की सिंचाई को स्मार्ट और अद्वितीय तरीके से नियंत्रित कर सकते हैं। इस लेख में हम आईओटी आधारित स्मार्ट सिंचाई प्रणाली पर चर्चा करेंगे, जिससे कृषि उत्पादन में सुधार हो सके और पानी की बचत हो सके।

आईओटी और उसका महत्व:

आईओटी का मतलब होता है इंटरनेट ऑफ थिंग्स (IoT), जिसका मुख्य उद्देश्य विभिन्न उपकरणों को इंटरनेट से जोड़कर उन्हें डेटा स्वतंत्र और विशिष्ट कार्रवाई की क्षमता प्रदान करना होता है। इसका कृषि में भी विशेष योगदान है, क्योंकि आईओटी की मदद से किसान अपने खेतों की सिंचाई को स्मार्ट रूप से नियंत्रित कर सकते हैं।

स्मार्ट सिंचाई का महत्व

सिंचाई एक महत्वपूर्ण कृषि क्रिया है जिसका सीधा असर उत्पादकता पर पड़ता है। भूमि की नमी के आधार पर सिंचाई करने से पौधों का विकास बेहतर होता है और उत्पादकता में वृद्धि होती है। इसके साथ ही, पानी की सही मात्रा में उपयोग करने से पानी की बचत होती है जो पर्यावरण के लिए भी अत्यंत महत्वपूर्ण है।

आईओटी आधारित स्मार्ट सिंचाई प्रणाली के संचालन सिद्धांत

आईओटी आधारित स्मार्ट सिंचाई प्रणाली में विभिन्न तरह के सेंसर्स और उपकरण इस्तेमाल होते हैं जिनसे खेतों की स्थिति को मॉनिटर किया जा सकता है। इन सेंसर्स की मदद से खेतों की भूमि की नमी, वायुमंडलीय, पौधों की स्थिति आदि को मॉनिटर किया जा सकता है। यह डेटा सेंट्रल यूनिट में जाता है जो डेटा को प्रोसेस करता है और उसके

जल प्रौद्योगिकी केंद्र

भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल : monalishapramanik@gmail.com आधार पर सिंचाई की आवश्यकता का निर्णय लेता है। आईओटी आधारित स्मार्ट सिंचाई प्रणाली के लाभ:

- समय और पानी की बचत: इस प्रणाली की मदद से किसान सिंचाई को समय पर और सही मात्रा में कर सकते हैं, जिससे पानी की बचत होती है और खेतों की उत्पादकता में सुधार होता है।
- अधिक उत्पादकता: स्मार्ट सिंचाई की मदद से पौधों का विकास बेहतर होता है, जिससे उत्पादकता में वृद्धि होती है।
- बेहतर संसाधन प्रबंधन: आईओटी के उपयोग से सिंचाई की मात्रा को नियंत्रित करने के साथ ही संसाधनों का बेहतर प्रबंधन किया जा सकता है।
- पर्यावरण संरक्षण: सही मात्रा में पानी का उपयोग करने से पानी की बचत होती है, जो पर्यावरण के लिए अत्यंत महत्वपूर्ण है।

आईओटी आधारित स्मार्ट सिंचाई प्रणाली की चुनौतियाँ:

आईओटी आधारित स्मार्ट सिंचाई प्रणाली में कई चुनौतियाँ हो सकती हैं, जो निम्नलिखित हैं:

- सुरक्षा: स्मार्ट सिंचाई प्रणाली डेटा को इंटरनेट के माध्यम से संचालित करती है, और इसलिए सुरक्षा के मामले में बहुत महत्वपूर्ण है। साइबर हमलों से सिंचाई प्रणाली को सुरक्षित रखना चुनौतीपूर्ण हो सकता है।
- डेटा प्रबंधन: बड़े मात्रा में जल संचालन डेटा को सहेजने, प्रोसेस करने, और व्यवस्थित करने के लिए काफी महंगा हो सकता है। इसे सही तरीके से प्रबंधित करना और सहेजना चुनौतीपूर्ण हो सकता है।
- संचालन और नियंत्रण: स्मार्ट सिंचाई प्रणाली को दूरस्थ स्थान से नियंत्रित करने की अनुमित देती है, लेकिन इसका मतलब है कि यह संचालन के लिए आवश्यक इंफ्रास्ट्रक्चर की भी आवश्यकता

- है, और इसका सवाल बनता है कि कैसे इसकी निगरानी और सुरक्षा को सुनिश्चित किया जाए।
- शक्ति संचालन: स्मार्ट सिंचाई प्रणाली के लिए सही से पावर सप्लाई करना और शक्ति की मन्यता इसकी सही संचालन के लिए महत्वपूर्ण है, और यह चुनौतीपूर्ण हो सकता है, खासकर जगहों पर जो बिजली की कमी के साथ हैं।
- प्राइवेसी: स्मार्ट सिंचाई प्रणाली डेटा को इंटरनेट के माध्यम से संचालित कर सकती है, जिससे प्राइवेसी के मामले में चुनौती आ सकती है। उपयोगकर्ताओं के डेटा की सुरक्षा और प्राइवेसी का सही तरीके से सुनिश्चित करना महत्वपूर्ण है।
- तकनीकी ज्ञान की कमी: स्मार्ट सिंचाई प्रणाली को चलाने और सुनिश्चित करने के लिए तकनीकी ज्ञान की आवश्यकता होती है, और कुछ जगहों पर यह ज्ञान की कमी हो सकती है।
- तंत्रिका समस्याएँ: बारिश, तूफान, बाढ़, और अन्य प्राकृतिक आपदाएं स्मार्ट सिंचाई प्रणाली को प्रभावित कर सकती हैं, और तंत्रिका समस्याओं की ज़रूरत होती है जैसे कि उपयोगकर्ता को आधारित जल संचालन प्रणाली में बग्स या तकनीकी खराबी।
- लागत: स्मार्ट सिंचाई प्रणाली के इंफ्रास्ट्रक्चर की स्थापना और शुरू करने की लागत महंगी हो सकती है, और इसका पर्यापन वित्तीय संसाधनों की आवश्यकता को सामने लाता है।
- तकनीकी चुनौतियाँ: आईओटी के प्रदान की जाने वाली तकनीकी सुविधाएँ किसानों के लिए नए होती हैं, जिनका सही तरीके से इस्तेमाल करना चुनौतीपूर्ण हो सकता है । इन चुनौतियों का समाधान तकनीकी, सुरक्षा, और नीतिगत माध्यमों से किया जा सकता है, और स्मार्ट सिंचाई प्रणाली को सुरक्षित, सुविधाजनक, और लाभकारी बनाने में मदद कर सकता है।

आईओटी आधारित स्मार्ट सिंचाई प्रणाली एक उन्नत और प्रभावी तरीका है खेतों की सिंचाई को स्मार्ट तरीके से नियंत्रित करने के लिए। इसके द्वारा किसान अपने खेतों की सिंचाई को समय पर और सही मात्रा में कर सकते हैं, जिससे पौधों का विकास बेहतर होता है और पानी की बचत होती है। हालांकि, इसके इस्तेमाल में कुछ चुनौतियाँ भी हो सकती हैं जो कि सही तरीके से पार की जा सकती हैं। इसलिए, उचित शिक्षा और तकनीकी समर्थन के साथ आईओटी सिंचाई प्रणाली का सफलतापूर्ण इस्तेमाल किया जा सकता है।

आईओटी (IoT) आधारित ड्रिप सिंचाई प्रणाली

कृषि क्षेत्र में सिंचाई का महत्वपूर्ण स्थान है, और यह पौधों के विकास और उत्पादन के लिए महत्वपूर्ण है। ड्रिप सिंचाई प्रणालियों में पानी को पौधों के नीचे सीधे पहुंचाया जाता है, जिससे पानी का अपशिष्ट होने की कम संभावना होता है और यह प्राकृतिक वातावरण को बचाने में मदद करता है। इसके अलावा, ड्रिप सिंचाई से पानी की बचत होती है, क्योंकि पानी केवल ज़रूरत के हिसाब से पौधों को पहुँचता है, और इससे सिंचाई के लिए कम पानी की आवश्यकता होती है।

आईओटी के आगमन ने कृषि सेक्टर में भी एक महत्वपूर्ण परिवर्तन की दिशा में कदम रखा है। ड्रिप सिंचाई के लिए आईओटी आधारित स्मार्ट प्रणाली एक बड़ी सफलता है। इस प्रणाली में, सेंसर्स और एक्ट्यूएटर्स का उपयोग किया जाता है जो कृषकों को उनकी खेतों की स्थिति को देखने और नियंत्रित करने की सुविधा प्रदान करते हैं।

आईओटी आधारित ड्रिप सिंचाई प्रणाली का संचालन

- सेंसिंग और डेटा संग्रहण: स्मार्ट ड्रिप सिंचाई प्रणाली के हिस्से के रूप में सेंसर्स लगे जाते हैं जो खेत में मौसम और भूमि की नमी को मापते हैं। यह सेंसर्स डेटा को डेटा स्टोरेज में भेजते हैं।
- डेटा अद्यतनन: इस डेटा को आईओटी सिस्टम के साथ जोड़कर खेत की वातावरणिक स्थिति का अद्यतनन किया जाता है।
- नियंत्रण और क्रियान्वयन: बेस्ड सेंसर डेटा के आधार पर आईओटी सिस्टम नियंत्रण यूनिट को निर्देशित करता है कि कब और कितनी सिंचाई की आवश्यकता है।
- कृषकों को सूचित करना: आईओटी प्रणाली कृषकों को खेत की स्थिति के बारे में सूचित करती है ताकि वे समय पर कार्रवाई कर सकें।

स्मार्ट सिंचाई के लाभ

- पानी की बचत: ड्रिप सिंचाई से पानी की बचत होती है क्योंकि पानी केवल ज़रूरत के हिसाब से पौधों को पहुँचता है.
- बीमा अवकाश: यह प्रणाली खराब मौसम की ओर बदलती है और कृषकों को बीमा अवकाश के लिए सूचित करती है।
- उत्पादकता में वृद्धि: ड्रिप सिंचाई से पानी की प्राकृतिक वापसी को बढ़ावा मिलता है, जिससे पौधों की उत्पादकता में वृद्धि होती है।
- खेती की बेहतर प्रबंधन: आईओटी सिस्टम खेत की स्थिति का निरीक्षण करता है और कृषकों को बेहतर प्रबंधन करने की सलाह देता है।
- बेहतर फसल उत्पादन: स्मार्ट सिंचाई के साथ,
 फसलों की उत्पादकता में वृद्धि होती है, क्योंकि
 पानी की उपयुक्त मात्रा में प्राप्त होती है।

आईओटी आधारित ड्रिप सिंचाई प्रणाली कृषि क्षेत्र में एक बड़ी सफलता है और कृषकों को पानी की बचत करने, उत्पादकता बढ़ाने, और पर्यावरण की सुरक्षा करने का मौका देती है। यह नई तकनीक न केवल किसानों के लिए बल्कि पूरे देश के लिए एक महत्वपूर्ण कदम है जो कृषि सेक्टर को सुदृढ़ करने और खेती के लिए एक साथ बढ़ने की दिशा में मदद कर सकता है।

आईओटी आधारित सतह सिंचाई प्रणाली

आईओटी सतह सिंचाई प्रणाली का महत्व आधुनिक जीवन में विशेष महत्व रखता है क्योंकि यह जल संचालन और प्रबंधन में तकनीकी उपयोग की सुविधा प्रदान करता है। यह किसानों, निर्माण क्षेत्र के लोगों, जल संचालन और प्रबंधन अधिकारियों, और सभी संचालन में जल के संचालन में सुधार करने में मदद करता है।

 सुदृढ़ सिंचाई प्रबंधन: आईओटी सतह सिंचाई प्रणाली बिना मान्यता सतही जानकारी को निरंतर मॉनिटर कर सकती है और नियंत्रित कर सकती है। यह जलस्रोतों का प्रबंधन करने में सहायक होता है और सिंचाई की आवश्यकता के आधार पर पानी का सही रूप से वितरण करने में मदद करता है।

- पेड़-पौधों के सुरक्षा: आईओटी सतह सिंचाई प्रणाली वायरस, कीट, और बीमारियों के खिलाफ पेड़-पौधों की सुरक्षा में मदद कर सकती है। यह विशेषज्ञता और तत्वों के स्तर पर सूचना प्रदान करके किसानों को समय पर कार्रवाई करने की स्थित में रखता है।
- पेड़-पोधों के उत्पादन को बढ़ावा: आईओटी सतह सिंचाई प्रणाली उचित प्रक्रिया और संचालन के माध्यम से पेड़-पौधों के उत्पादन को बढ़ावा देती है। यह सीधे जल संप्रेषण की दिशा में मदद करता है और पोषण के लिए सही सामग्री की व्यवस्था करता है।
- संवेदनशीलता और योजनाएँ: आईओटी सतह सिंचाई प्रणाली जल संसाधनों के संवेदनशीलता को बढ़ावा देने के साथ जल उपयोग की योजनाएँ तैयार करने में मदद करती है।
- सटीक सिंचाई: आईओटी सतह सिंचाई प्रणाली पोषण की खर्च को कम कर सकती है और सटीक सिंचाई के लिए समादान प्रदान कर सकती है, जिससे पानी की बचत होती है।
- वित्तीय लाभ: इसके माध्यम से किसान और कृषि
 उत्पादक अधिक उत्पादन और कम खर्च में काम
 कर सकते हैं, जिससे उनका वित्तीय लाभ बढ़ता है।

आईओटी आधारित स्वचालित बेसिन सिंचाई प्रणाली जल प्रौद्योगिकी केन्द्र, नई दिल्ली द्वारा, एक विशेष प्रणाली बनाई है जो एक सेंसर का उपयोग करके स्वचालित

चित्र : स्वचालित बेसिन सिंचाई प्रणाली के घटक

रूप से पौधों को पानी देती है जो जांच करती है कि मिट्टी कितनी नम है। सिस्टम के तीन भाग हैं: सेंसर, संचार इकाई और नियंत्रण इकाई। सेंसर मिट्टी में नमी को मापता है, और फिर नियंत्रण इकाई को एक संदेश भेजता है। नियंत्रण इकाई पौधों में पानी जाने के लिए गेट खोलती और बंद करती है। हमने गेहूं के पौधों पर इस प्रणाली का परीक्षण किया और पाया कि पानी देने के सामान्य तरीके की तुलना में इससे लगभग 25% पानी की बचत होती है। इस प्रणाली की लागत लगभग 17500 रुपये है। इस प्रणाली से, पौधे पानी का अधिक कुशलता से उपयोग करने और बेहतर विकास करने में सक्षम हुए। आईओटी आधारित सेंसर का उपयोग करने

वाली स्वचालित सिंचाई प्रणाली वास्तव में किसानों के लिए उपयोगी है। इससे उन्हें बहुत अधिक पानी बर्बाद किए बिना अपनी फसलों को पानी देने में मदद मिलती है। इस प्रणाली से किसान पानी को स्वचालित रूप से नियंत्रित कर सकते हैं और दूर से भी ऐसा कर सकते हैं। इससे पानी की काफी बचत होती है और पर्यावरण को भी मदद मिलती है। भविष्य में, अधिक किसान इस प्रणाली का उपयोग करेंगे और इससे खेती बेहतर होगी और फसलों के लिए पर्याप्त पानी न होने की समस्या का समाधान होगा। यह पौधों को पानी देने का एक स्मार्ट और सस्ता तरीका है।

सिंचाई के लिए सौर ऊर्जा का उपयोग

विजय प्रजापति, मनोज खन्ना, मोनालिशा प्रमाणिक, सुसमा सुधिश्री, मान सिंह एवं पी. एस. ब्रह्मानंद

जैविक ऊर्जा के पारंपिरक स्रोतों के निरंतर इस्तेमाल से इनके भंडारों में कमी हो रही है तथा इन स्रोतों से काफी मात्रा में प्रदूषित हवाएं निकलती है जो वायुमंडल को भी प्रदूषित कर रही है। इन तथ्यों को देखते हुए ऊर्जा संकट की चुनौतियों को दूर करने में सौर ऊर्जा एक बेहतरीन विकल्प है। सौर ऊर्जा के इस्तेमाल के लिए भारत में आदर्श भौगोलिक स्थिति है जहाँ हर साल लगभग 300 धूप वाले दिन होते हैं। इस तकनीक में न तो हानिकारक गैसों का उत्सर्जन होता है और न ही किसी तरह का ध्विन प्रदूषण होता है। यह ऊर्जा के उन स्रोतों में से एक है जो जलवायु परिवर्तन की चुनोतियों में भी अहम् भूमिका निभा सकता है।

हालंकि इस संयंत्र को लगाने में शुरुआती खर्च थोडा अधिक प्रतीत होता है लेकिन लम्बे समय तक संयंत्र के संचालन और भविष्य में उर्जा की चुनौतियों को देखते हुए इस पर निवेश किया जा सकता है।

सौर पंप के संचालन का सिद्धांत

इस प्रक्रिया वाटर-पम्प को सोलर पैनल के साथ जोड़ दिया जाता है। सूर्य से आने वाली रोशनी जब सोलर पैनल में पड़ती है तो उसमे लगे फोटोवोल्टेक सेल तकनीक से बिजली उत्पन्न होने लगती है और उससे जुड़ा पंप काम करने लगता है।

डीजल और इलेक्ट्रिक पंप की भांति ही इससे भी जल को किसी भी स्रोत जैसे की कुएं, बोरवेल, तालाब, नहर आदि से उपयोग में लाया जा सकता है। सौर पैनल सिस्टम की स्थापना के लिए यह सुनिश्चित करना आवश्यक है की वह क्षेत्र छाया मुक्त हो और वहां भरपूर मात्रा में सूर्य की रोशनी पहुँचती हो।

सिंचाई में प्रयोग

किसानों को अपने काम-काज के लिए सही समय में पर्याप्त मात्रा में बिजली की आवश्यकता होती है| मौजूदा

चित्र: सिंचाई के लिए सौर ऊर्जा का उपयोग (स्त्रोत: जल प्रौद्योगिकी केंद्र)

जल प्रौद्योगिकी केंद्र भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल : prajapati114@gmail.com व्यवस्था में समय और आवश्यकता के अनुसार बिजली न मिलने से कई बार किसानों को बहुत कठिनाई का सामना करना पड़ता है। यह भी देखने में आया है की रात्रि के समय

बिजली मिलने कारण किसानों को असुविधा भी होती है और कई बार खेतों की सिंचाई करने वाला पंप सेट जरुरत से ज्यादा भी चल जाता है। इससे न सिर्फ बिजली और पानी की बर्बादी होती है बल्कि जल और खाद के इस्तेमाल की दक्षता भी कम होती है। जिससे लागत मूल्य में वृद्धि होती है और फसलों के उत्पादन पर भी इसका असर पड़ता है। यदि किसानों के पास बिजली संचालन पर नियंत्रण हो तो वे इस तरह की बर्बादी को तो रोक ही सकते है साथ ही हर महीने बिजली बिल के भुगतान पर भी बचत कर सकते हैं। जिससे उनके खर्च में कमी और आय में वृद्धि होगी।

पीएम-कुसुम योजना

पिछले दो दशकों में कृषि के कार्यों में बिजली की खपत में काफी बढोतरी हुई है। 2001-02 में इसकी खपत 81,673 जीडब्लूएच था जो की 2019-20 में बढकर 2,28,172 जीडब्लूएच हो गया। भारत सरकार के नवीन एवं नवीकरणीय ऊर्जा मंत्रालय ने किसानों के लिए प्रधानमंत्री किसान ऊर्जा सुरक्षा और उत्थान महाभियान (पीएम-कुसुम) योजना की शुरुआत की है जिसका उद्देश्य भारत में किसानों के लिए ऊर्जा सुरक्षा सुनिश्चित करना तथा 20 लाख किसानों को सौर सिंचाई पंप में सहायता प्रदान करना है।। इससे न केवल किसानों को उपयुक्त समय में बिजली मिलेगी अपितु जीवाश्म-ईंधन स्रोतों से बिजली की उत्पादन पर भार भी कम होगा।

पीएम-कुसुम योजना 2019 मुख्यत तीन घटक शामिल हैं। घटक-ए: यह घटक बंजर भूमि पर 10,000 मेगावाट विकेंद्रीकृत ग्रिड से जुड़े नवीकरणीय ऊर्जा ऊर्जा संयंत्रों की स्थापना से जुड़ा है। इस घटक के तहत 500 किलोवाट से 2 मेगावाट क्षमता के अक्षय ऊर्जा आधारित बिजली संयंत्र (आरईपीपी) किसान व किसानों के समूह /सहकारिता/पंचायतों/किसान उत्पादक संगठनों (एफपीओ)/जल उपयोगकर्ता संघों (डब्ल्यूयूए) द्वारा बंजर/ परती भूमि की स्थापना की जा सकती है।

इन बिजली संयंत्रों को खेती योग्य भूमि पर स्टिल्ट्स पर भी स्थापित किया जा सकता है जहां फसलें सौर पैनलों के नीचे भी उगाई जा सकती हैं। उत्पन्न बिजली स्थानीय डिस्कॉम द्वारा पूर्व-निर्धारित टैरिफ पर खरीदी जाएगी।

घटक-बी: इस घटक में 17.50 लाख स्टैंड-अलोन सौर कृषि पंपों की स्थापना की योजना है। इस घटक के तहत, अलग-अलग किसानों को ऑफ-ग्रिड क्षेत्रों में मौजूदा डीजल कृषि पंपों / सिंचाई प्रणालियों के प्रतिस्थापन के लिए 7.5 एचपी तक की क्षमता के स्टैंडअलोन सौर कृषि पंप स्थापित करने के लिए सहायता दी जाएगी, जहां ग्रिड आपूर्ति उपलब्ध नहीं है। 7.5 एचपी से अधिक क्षमता के पंप भी स्थापित किए जा सकते हैं, हालांकि, वित्तीय सहायता 7.5 एचपी क्षमता तक सीमित होगी।

घटक-सी: इस घटक में 10 लाख ग्रिड से जुड़े कृषि पंपों के सोलराइजेशन के लिए है। इसके तहत, ग्रिड से जुड़े कृषि पंप वाले व्यक्तिगत किसानों को पंपों को सोलराइज करने के लिए सहायता दी जाएगी। किसान सिंचाई की जरूरतों को पूरा करने के लिए उत्पन्न सौर ऊर्जा का उपयोग करने में सक्षम होगा और अतिरिक्त सौर ऊर्जा को पूर्व निर्धारित टैरिफ पर डिस्कॉम को बेच सकेंगे है।

सरकार द्वारा वित्तीय सहायता

पीएम-कुसुम योजना के तहत केंद्र तथा राज्य सरकार की ओर से वित्तीय सहायता के प्रावधान है।

घटक-ए के लिए: खरीद आधारित प्रोत्साहन (पीबीआई) @ 40 पैसे/केडब्ल्यूएच या रु 6.60 लाख/मेगावाट/वर्ष, जो भी कम हो, किसानों/डेवलपर्स से बिजली खरीदने के लिए पहले पांच वर्षों के लिए वितरण कंपनियों को एमएनआरई द्वारा प्रदान किया जाएगा।

घटक-बी और सी के लिए:

बेंचमार्क लागत या निविदा लागत जो भी कम हो उसका 30% केंद्र सरकार, 30% सब्सिडी का योगदान राज्य सरकार की ओर से दिया जायगा शेष 40% का भुगतान किसानों द्वारा देय होगा।

उत्तर पूर्वी राज्यों सिक्किम, जम्मू-कश्मीर, हिमाचल, उत्तराखंड, लक्षद्वीप और अंडमान और निकोबार द्वीपों में, 50% की केंद्र सरकार, 30% की सब्सिडी राज्य सरकार तथा शेष 20% किसानों द्वारा देय होगा।

सौर पम्पिंग प्रणाली के लाभ

यह प्रणाली बिना ईंधन से चलने के साथ साथ पर्यावरण अनुकूलित भी है। इसके संक्षिप्त लाभ कुछ इस प्रकार है।

ऊर्जा और जल सुरक्षा

बिजली की सुनिश्चितता का नियंत्रण किसानों के हाथ में होने से उर्जा की समस्या का हल हो सकेगा। किसान अपनी मर्जी से उचित समय पर अपने काम को कर सकेगा। वैसे किसान जिनको रात्रि के दौरान सिंचाई के लिए बिजली मिलती है। इससे उन्हें न केवल असुविधा होती है, बल्कि कई बार खेत में आवश्यकता से अधिक पानी लग जाने के कारण जल की बर्बादी भी होती है। सौर ऊर्जा की मदद से किसान जल की बर्बादी रोक सकेंगे जिससे जल और ऊर्जा पर व्यापक प्रभाव पड़ेगा।

किसानों की आय में वृद्धि

इस योजना से ऊर्जा और जल सुरक्षा मिलने से फसलों के पैदावार और गुणवता में वृद्धि होगी जिससे किसानों की आय बढेगी। साथ ही किसान अतिरिक्त (सरप्लस) बिजली भी कम्पनी को बेच सकते है। जिससे उनको और अधिक मुनाफा होगा। किसानों को हर महीने के बिजली बिल भुगतान से भी छुटकारा मिलेगा।

जलवायु परिवर्तन में कमी

पारम्परिक ईंधनों से बिजली उत्पादन तथा डीजल पंप सेट के इस्तेमाल से बहुत अधिक मात्रा में हानिकारक गैसों का उत्सर्जन होता है। जिससे पर्यावरण पर प्रतिकूल असर पड़ता है जो जलवायु परिवर्तन के लिए काफी हद तक जिम्मेदार है। सौर विधि द्वारा बिजली उत्पन करने तथा डीजल पंपों को हटाकर सौर पंप लगाकर खेती करने से जलवायु परिवर्तन में काफी कमी आ सकती है।

पेट्रोलियम उप्तादों के आयात में कमी

भारत अपनी कच्चे तेल की ज़रूरत का लगभग 84% आयात करता है। डीजल तथा पेट्रोल संचलित उपकरणों के कम इस्तेमाल से कच्चे तेल की आवश्यकता में भी कमी आएगी। अत: उनके आयात को कम करके उस पैसे का इस्तेमाल अन्य विकास कार्यों में किया जा सकेगा और दूसरे देशों पर हमारी निर्भरता भी कम होगी।

सौर ऊर्जा का प्रयोग न सिर्फ हमारे वायुमंडल में प्रदूषण को कम करने में सहायक हो सकता है बल्कि ऊर्जा सुरक्षा में आत्मनिर्भर भी बना सकता है। पीएम-कुसुम योजना के तहत किसान सरकारी लाभ लेकर बिजली की समस्या से निजात पा सकते है और सुचारू रूप से अपना काम कर सकते है।

भारतीय कृषि प्रक्षेत्रों पर उन्नत जल प्रबंधन की आवश्यकता : वर्तमान और भविष्य की चुनौतियों और उपलब्ध तकनीकी समाधानों का आंकलन

अनिल कुमार मिश्र

भारत के कृषि क्षेत्र में खाद्य उत्पादन और पशुधन पालन के लिए प्रमुख आगत के रूप में सिंचाई जल सबसे महत्वपूर्ण भूमिका निभाता है। भविष्य में होने वाली तीव्र जनसंख्या वृद्धि के वर्तमान रुझानों को देखते हुए, भोजन की मांग को कृषि क्षेत्रों में उत्पादन और उत्पादकता वृद्धि सुनिश्चित करते हुये उन्नत जल प्रबंधन के द्वारा तत्काल प्रभाव से पूरा किया जाना चाहिए। जो बहुत कुछ उपलब्ध जल संसाधनों का कुशलतापूर्वक दोहन करने की हमारी क्षमता पर निर्भर करता है। मुझे तो यहाँ तक कहना उचित प्रतीत होता है कि भारतीय मॉनस्न की चाल को देखत हुये न केवल भारत की वार्षिक कृषि एवं भोज्य पदार्थ सुरक्षा वरन अगले चार या पाँच वर्षों तक के लिए भोज्य पदार्थों का संचयन भी अति आवश्यक है क्योंकि अभी भी हमारा देश समग्र रूप से पूर्णतया सिंचित देश की श्रेणी में नहीं आ पाया है। इस कारण जब हम खाद्य सुरक्षा की बात करते हैं तब उत्पादन और उत्पादकता को बढ़ाने हेत् महत्वपूर्ण विषयों में जल प्रबंधन भी एक प्रमुख विषय हो जाता है। अभी विगत कुछ वर्षों में ही अनेकों नवोन्मेषी और नवीन प्रौद्योगिकियों ने कृषि में जल प्रबंधन और नियंत्रण में अतीव सुधार किया है। इंटरनेट ऑफ थिंग्स, वायरलेस सेंसर नेटवर्क और क्लाउड कंप्यूटिंग का उपयोग कृषि में विविध संदर्भों में किया जाने लगा है और अब तो सम्यक जल प्रबंधन में भी इन्हीं तकनीकियों का बोलबाला है। सामान्य रूप से जल प्रबंधन की विशिष्ट चुनौती पर ध्यान केंद्रित करके, मौजूदा दृष्टिकोणों का लक्ष्य, प्रत्यक्ष मानव हस्तक्षेप की आवश्यकता को कम करते हुए जल के उपयोग को अनुकूलित करना और कृषि फसलों की गुणवत्ता व मात्रा में सुधार करना ही हमारा अभीष्ट होना उचित है। यह लक्ष्य जल नियंत्रण प्रक्रिया को सुचारु करके प्राप्त किया जा सकता है। साथ ही साथ उपयुक्त स्वचालन स्तर लागू करके और

जल प्रौद्योगिकी केंद्र भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल: dranilkumarmishra1@gmail.com

किसानों को अपने खेतों से जुड़ने की अनुमति, कहीं से भी और कभी भी देना भविष्य की जल सुरक्षा की महत्वपूर्ण प्रविधि होने वाली है। यद्यपि कृषि क्षेत्रों में में उन्नत जल प्रबंधन से जुड़ी बहुत सारी चुनौतियाँ हैं जैसे; सिंचाई व जल निकास के लिए जल पाइपलाइन वितरण तंत्र (नेटवर्क) का अवलोकन तथा देखभाल, मनुष्यों व पशुधन के लिए पीने का जल, जल प्रदूषण का अवलोकन, जल का पुन: उपयोग, आदि। विगत दशक में कई अध्ययन इन प्रश्नों के लिए समर्पित किए गए हैं। इस आलेख में उन्नत प्रौद्योगिकियों द्वारा समर्थित कृषि में जल प्रबंधन और देखभाल से संबंधित पिछले कुछ समय में अन्वेषित नवीन तकनीकियों और शोध कार्यों पर एक साहित्य सर्वेक्षण के आधार पर चर्चा की गयी है। इसमें कुछ सामान्य चुनौतियों पर भी चर्चा की गई है, जिनके आधार पर भविष्य में कृषि क्षेत्र में जल प्रबंधन, सिंचन निकाय का अवलोकन और भविष्य के लिए मार्गदर्शन हेतु आधुनिक चतुर (स्मार्ट) अवधारणाओं और उपकरणों के उपयोग के संबंध में प्रासंगिक अनुसंधान दिशा-निर्देश तैयार किए जा सकते हैं। नवीन और उन्नत तकनीकियों के प्रयोग से किसानों को घर बैठे ही कहीं भी और किसी भी समय अपने खेतों से जुड़ने और फसलों की स्थिति का अंकलन करने की सुविधा मिल सकती है। जिनके आधार पर भविष्य में कृषि क्षेत्र में जल प्रबंधन और प्रक्षेत्रों के सम्यक अवलोकन के लिए आधुनिक स्मार्ट अवधारणाओं और उपकरणों के उपयोग के संबंध में प्रासंगिक अनुसंधान दिशा-निर्देश तैयार किए जा सकते हैं। और किसानों को कहीं भी और किसी भी समय अपने खेतों से जुड़ने की अनुमित मिल रही है। इस आलेख में, कृषि क्षेत्र में जल उपयोग विनियमन में एक स्मार्ट अवधारणा विकसित करने के लिए नवीन प्रौद्योगिकियों के उपयोग पर (साहित्य सर्वेक्षण आधारित) एक समग्र आंकलन प्रस्तुत करने का प्रयास किया गया हैं। ये प्रौद्योगिकियाँ जल की हानि को कम करने में भी सक्षम हैं, क्योंकि यह सीमित मीठे जल के संसाधनों की समग्र स्थिरता के लिए महत्वपूर्ण है।

कृषि एक मूलभूत क्षेत्र है जो भारत सहित विश्व की बढ़ती जनसंख्या की खाद्य आवश्यकता की पूर्ति को बनाए रखने और विभिन्न महाद्वीपों पर कई क्षेत्रों की अर्थव्यवस्था को बढ़ावा देने में सक्षम बनाता है। फिर भी, ऐसे उद्देश्यों तक पहंचने के लिए, कृषि पद्धतियों को पारिस्थितिक और पर्यावरणीय दोनों बाधाओं को ध्यान में रखना चाहिए। विशेष रूप से, उन्हें अनुकृलित और स्वच्छ विधियों से जल संसाधनों के संरक्षण की सुरक्षा प्रदान करते हुए, कृषिगत जल उपयोग कम कमी के साथ साथ, जल भंडारण, जल के कुशलतम उपयोग एवं भूमि के तीव्र क्षरण को भी रोकना होगा। खाद्य और कृषि संगठन (एफएओ) इस बात पर भी जोर देता है कि आध्निक कृषि के लिए एक रणनीति बनाई जानी चाहिए, ताकि प्राकृतिक संसाधनों का संरक्षण, संरक्षण और मूल्यवर्धन किया जा सके और जनसंख्या का स्वास्थ्य सुनिश्चित किया जा सके। दुनिया सहित भारत देश की खाद्य पद्धार्थों की आवश्यकताओं की पूर्ति करने के लिए, वानिकी, पश्धन और फसलों जैसे कृषि क्षेत्रों के विकास पर महत्वपूर्ण प्रयासों को आगे बढ़ाया जाना चाहिए। साथ ही, चूंकि जल एक प्राकृतिक संसाधन है जो उपरोक्त खाद्य मांग की पूर्ति में केंद्रीय भूमिका निभाता है, इस लिए उसका सम्यक प्रबंधन किए जाने की महती अवश्यकता है, विशेष रूप से तब, जब यह कृषि क्षेत्र के सुदृढ़ीकरण में बहुत महत्वपूर्ण भूमिका निभा सकता है और फसल वृद्धि में महत्वपूर्ण योगदान देता है। जल की कमी, अपर्याप्त पोषक तत्वों की आपूर्ति या अनुपचारित स्रोतों के दोहन के परिणामस्वरूप निम्न गुणवत्तापूर्ण, अस्थिर फसल होती है, और कुछ मामलों में, दृषित जल का प्रयोग स्वास्थ्य के लिए भी प्रतिकृल हो सकता है जिससे गंभीर बीमारियाँ और यहाँ तक कि मृत्यु भी हो सकती हैं।

आज देश में ऐसी कई उन्नत प्रविधियाँ तीव्रता से लोकप्रिय हो रही हैं जो जल स्रोतों को संरक्षित और संग्रहीत करने में हमारा सहयोग कर सकती हैं, जैसे वर्षा जल को संग्रहीत करने के लिए बांध बनाना, समुद्री जल अलवणीकरण, अपशिष्ट जल उपचार और किसी भी क्षति या रिसाव का पता लगाने के लिए जल पाइपलाइनों का अवलोकन करना।

आज कल की नवीनतम प्रौद्योगिकियों में साइबर-फिजिकल सिस्टम (सीपीएस), वायरलेस सेंसर नेटवर्क (डब्ल्यूएसएन), इंटरनेट ऑफ थिंग्स (आईओटी) और क्लाउड टेक्नोलॉजीज मुख्य अनुसंधान प्रतिमान हैं जिनका उपयोग इन प्रविधियों को और अधिक चुस्त/स्मार्ट बनाकर बढ़ाने के लिए किया जाता है। ये प्रतिमान एक स्वचालित और एकीकृत प्रणाली बनाने के साधन के रूप में कृषि उद्योग में प्रवेश कर चुके हैं। वे संवेदकों (सेंसरस) पर विश्वास करते हैं जो मिट्टी की स्थिति, फसल की वृद्धि, मौसम के पैटर्न और अन्य उपयोगी डेटा की मात्रात्मक माप रिकॉर्ड कर सकते हैं। ये सेंसर डेटा भेजने और प्राप्त करने में सक्षम उपकरणों का एक संजाल बनाते हैं, जो डेटा भंडारण और प्रसंस्करण को स्व्यवस्थित करता है। पर्यावरण सेंसर (जैसे आर्द्रता, दबाव और तापमान सेंसर) डब्ल्यूएसएन और सीपीएस बुनियादी ढांचे में तैनात किए गए हैं। ये सेंसर बड़े पैमाने पर संग्रहीत और संसाधित किए गए विशाल और विषम स्थानिक-लौकिक डेटा उत्पन्न करते हैं। यह डेटा प्रोसेसिंग स्वाभाविक रूप से टांसमिशन संचालन, विश्लेषण और निर्णय लेने पर आवश्यक वास्तविक समय की सुविधा को दर्शाती है। इस विषय के बारे में साहित्य महत्वपूर्ण होता जा रहा है, इसलिए विशेष रूप से कृषि में जल के उपयोग से संबंधित प्रगति और वर्तमान चुनौतियों पर दृष्टिपात करने के लिए एक अत्याधुनिक समीक्षा करने की आवश्यकता है। जल संयंत्रों के अवलोकन के लिए कृत्रिम बुद्धिमत्ता समाधान कार्यान्वयन कृषि उत्पादन को बढ़ाने और प्रबंधन को सुविधाजनक बनाने की संभावना प्रदान करता है। हम उन्नत प्रौद्योगिकियों का उपयोग करके जल संसाधनों, पर्यावरण को संरक्षित करने और फसलों को उन्नत बनाने की आवश्यकता है। इस प्रयोजन के लिए, कृषि में वास्तविक चुनौतियाँ प्रस्तुत करने वाले चार अनुप्रयोग क्षेत्रों की पहचान कर के कृषि क्षेत्र में विकास के लिए एक प्राथमिक कारक के रूप में जल प्रबंधन में सुधार के लिए इन अनुप्रयोग क्षेत्रों पर सावधानीपूर्वक विचार किया जाना केवल सामयिक ही नहीं वरन आवश्यक भी है।

कृषि में जल प्रबंधन से संबंधित प्रमुख चुनौतियाँ

आइये अब हम कृषि क्षेत्र में जल के उपयोग में महत्वपूर्ण चुनौतियों पर चर्चा करते हैं। प्रत्येक चुनौती आधुनिक प्रौद्योगिकियों, जैसे, डब्लूएसएन और आईओटी के एकीकरण के माध्यम से, उच्च दक्षता के लिए पारंपरिक जल प्रबंधन समाधानों से अधिक स्मार्ट समाधानों की ओर एक महत्वपूर्ण बदलाव को प्रेरित करती है। हमें कई नवोन्मेषी दृष्टिकोणों और विधियों पर अधिक जोर देना होगा जो स्मार्ट जल प्रबंधन के लिए आधुनिक प्रौद्योगिकियों का लाभ उठा

सकती हों। इनमें से कुछ का विवरण नीचे के अनुच्छेदों में दिया जा रहा है।

मनुष्यों एवं पशुधन के लिए पीने के शुद्ध जल की उपलब्धता में वृद्धि

शुद्ध और स्वच्छ जल का सर्वोतम प्रयोग जीवधारियों को पीने के लिए ही हो सकता है। मानव के अतिरिक्त कृषि में पशुधन पालन मुख्य रूप से मांस, दुध और अंडे के उत्पादन के उद्देश्यों के लिए पशुधन को बढ़ाने और बनाए रखने से संबंधित है। कृषि गतिविधि में पश् आहार संचालन के स्थान को समझना इस क्षेत्र में प्रभावी जल उपयोग के लिए आवश्यक है। दग्धोत्पादन और पश्धन का स्वास्थ्य, जल की गुणवत्ता और उपलब्ध मात्रा या परिमाण से प्रभावित होते हैं। वे प्राकृतिक वातावरण में आवश्यक तत्व हैं और पारिस्थितिक संतुलन और क्षेत्रीय अर्थव्यवस्था में सक्रिय भूमिका निभाते हैं। पशुधन बड़ी मात्रा में खाद्य पदार्थ प्रदान करके मानव आवश्यकताओं के लिए बहुत महत्वपूर्ण है। उदाहरण के लिए, मांस और दूध लंबे समय से अपने उच्च पोषक मूल्य के लिए जाने जाते हैं, जो मजबूत, स्वस्थ लोगों को पैदा करते हैं। कुछ किसान मिट्टी में मिश्रित प्राकृतिक उर्वरक के रूप में जैविक अवशेषों (पशु) पर भी निर्भर रहते हैं। दृषित (प्रदृषित या खारा जल) होने पर, वे जीवों के साथ साथ फसल की वृद्धि पर भी नकारात्मक प्रभाव डालते हैं और संक्रमण और बीमारियों के उपभोक्ताओं तक संचरण में योगदान करते हैं। पश्धन के स्वास्थ्य को सुनिश्चित करने के लिए जल संसाधन प्रबंधन जैसे गंभीर विचारों को ध्यान में रखा जाना चाहिए। यह मुख्य रूप से खाद्य आपूर्ति का अवलोकन पर निर्भर करता है जिस पर गंभीरता से ध्यान दिया जाना चाहिए, विशेषकर जल की गुणवत्ता पर।

सिंचाई जल की उपलब्धता और इस का समुचित उपयोग

इस चुनौती को कृषि क्षेत्र में विभिन्न प्रदायों जैसे जल देना, सिंचाई, छिड़काव या छिड़काव प्रक्रिया के अंतर्गत संदर्भित किया जाता है। इसका मुख्य उद्देश्य व्यवस्थित और गणनात्मक तरीके, मौसम की स्थिति, क्षेत्र की स्थलाकृति और मिट्टी की प्रकृति (अम्लता, ग्रेडिंग इत्यादि) के आधार पर कृषि उपयोग के लिए दोहन योग्य क्षेत्रों में जल उपलब्ध कराना है। मिट्टी को जल की आपूर्ति करने से पौधे की वृद्धि के लिए आवश्यक नमी की मात्रा संरक्षित रहती है और दूसरी ओर लवणता प्रभावित क्षेत्रों में पौधे के जड़ क्षेत्र में स्वीकार्य लवणता सांद्रता बनाए रखने के लिए, मिट्टी से अतिरिक्त नमक को धोया जाता है (लवणों को जल में घोल कर निछालन करने से)। कुछ क्षेत्रों में किसान सिंचाई के लिए खारे जल का उपयोग करते हैं। परिणामस्वरूप, मिट्टी के लवणीकरण के कारण फसल उत्पादकता कम हो जाती है। इस प्रकार की समस्या शुष्क एवं अर्धशुष्क क्षेत्रों (जैसे हिरयाणा और राजस्थान में दिखाई देती है। इसलिए किसानों की गतिविधियों और जल के अवलोकन को सुविधाजनक बनाने के लिए, जल की लवणता के स्थानिक वितरण दृष्टिकोण का उपयोग करके ऐसे क्षेत्रों में सिंचाई का प्रबंधन करना महत्वपूर्ण है।

सिंचन अथवा सिंचाई तकनीक का चयन क्षेत्र (तटीय, अंतर्देशीय, रेगिस्तान), कृषि उत्पाद, जलवायु (गर्म, ठंडा, मध्यम), मिट्टी की गुणवत्ता, मिट्टी की उर्वरता, मात्रा और छिड़काव के लिए जल कैसे संचित किया जाता है, के आधार पर भिन्न होता है। खेत तालाबों, कुओं, बांधों, नदियों और वर्षा जल सहित विभिन्न स्रोतों से जल खींचते हैं। सिंचाई तकनीकों के पारंपरिक तरीकों का उपयोग करने के स्थान पर. स्मार्ट सिंचाई तकनीकों से परिवर्तित कर देने से किसानों को सिंचाई के समय जल की हानि रोकने में सहायता मिलेगी। मानव रहित हवाई वाहन (युएवी) फसल क्षेत्र में एकरूपता जल वितरण का पता लगाकर सिंचाई में उपयोग किए जाने वाले जल को अनुकूलित करने के लिए निर्णय निर्माताओं के लिए एक बहुत ही उपयोगी समाधान प्रदान करते हैं। सामान्यतः, फसल की समग्र गुणवत्ता और मात्रा को बढ़ाकर, एक स्मार्ट अवधारणा की ओर अभिसरण के साथ कृषि प्रक्रियाओं को प्रभावी और अधिक कुशल बनाने में महत्वपूर्ण भूमिका निभा सकता है। स्वचालित सिंचाई जल के अतिप्रवाह और समय और बिजली जैसे संसाधन के उपयोग को भी कम कर सकती है।

जल वितरण तंत्र (नेटवर्क) का सतत अवलोकन और निरीक्षण प्रणाली

हमारे देश के कृषि क्षेत्रों में नहरी सिंचित क्षेत्रों और आधुनिक जल वितरण संजाल (नेटवर्क), जैसे ड्रिप सिंचन तंत्र अथवा स्प्रिकलर सिंचन तंत्र के पाइप सिंचन संजाल की स्थिति, उपयुक्तता, टूट-फूट और मरम्मत पर गंभीरता से विचार किया जाना चाहिए, विशेष रूप से भूमिगत

संरचनाओं, जो पर्यावरणीय संसाधनों को संरक्षित करने और पूरी फसल प्राप्त करने के लिए जल के समानुपाती वितरण को स्निश्चित करने के लिए नेटवर्क की स्थायी निगरानी की चिंता को बढ़ा सकती है। पाइप की उम्र, अधिक दबाव, अन्चित स्थापना, यांत्रिक एक्चुएटर की खराबी (यानी वाल्व, पंप, स्प्रेयर, आदि) और प्राकृतिक आपदाएं सबसे महत्वपूर्ण कारक हैं जो जल पाइपलाइन वितरण नेटवर्क में रिसाव और क्षित का कारण बन सकते हैं। नहरी क्षेत्रों में जलोत्प्लावन, नहरों को काट देना, और बाद में उस की देखभाल में कमी। सिंचाई तंत्र (नेटवर्क) में जल के रिसाव से फसल की वृद्धि के लिए जल की अपर्याप्त मात्रा के कारण, अथवा कृषि उपज की उत्पादकता में कमी हो सकती है। वास्तविक समय का अवलोकन और नियंत्रण तंत्र जल वितरण से संबंधित इन विषयों को दूर करने में सहयोग करते हैं। जल पाइपलाइन निगरानी प्रणाली सबसे सफल समाधानों में से एक है, जिसमें जल के रिसाव की समस्या को कम करने के लिए नवोन्मेषी प्रौद्योगिकी की आवश्यकता होती है और एक आध्निक सिंचन तंत्र में लगा हुआ पाइपलाइन निरीक्षण तंत्र सिंचन तंत्र के मूलभूत ढांचे के निरीक्षण के लिए एक प्रभावी विधि हो सकती है।

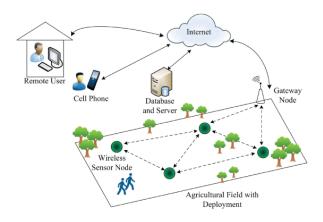
जल का पुनर्चक्रण / पुन: उपयोग और जल प्रदूषण निरीक्षण प्रणाली

मानव और औद्योगिक गतिविधियां प्राकृतिक पर्यावरण में प्रदूषक तत्वों को अवशोषित अथवा अधिशोषित कर सकती हैं, जिससे अपर्याप्त उपचारित अपशिष्ट जल के कारण जलीय पारिस्थितिकी तंत्र का क्षरण हो सकता है उदाहरण के लिए, झीलों और नदियों जैसे जल निकायों का उपयोग कृषि में सिंचाई के लिए जल स्रोत के रूप में किया जा सकता है। जब ये स्रोत दूषित हो जाते हैं तो परिणामस्वरूप, वे खनिज-लवण अपनी विशेषताओं को खो देते हैं, इतना ही नहीं बल्कि इससे भी अधिक चिंता की बात यह है कि ये बाहरी प्रदृषित रासायनिक अवयव जल की गुणवत्ता को इतनी बुरी तरह से प्रभावित कर सकते हैं कि कृषि उत्पादन पर घोर नकारात्मक प्रभाव डाल सकती हैं। इस तथ्य के परिणामस्वरूप उपभोक्ताओं की मृत्यु का कारण बनने वाली बीमारियों से पीड़ित होने की संभावना बढ़ कर सार्वजनिक स्वास्थ्य समस्या उत्पन्न हो सकती है। वस्तुतः, अनुपचारित अपशिष्ट जल में बहुत बार रोगजनक, रासायनिक संदूषक, एंटीबायोटिक अवशेष और किसानों,

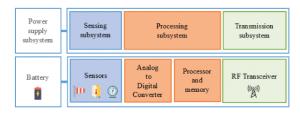
खाद्य श्रृंखला श्रमिकों और उपभोक्ताओं के स्वास्थ्य के लिए अन्य खतरे भी घुले-मिले हुए होते हैं। यद्यपि हमें प्राकृतिक रूप से पाए जाने वाले बैक्टीरिया के महत्व को भी नहीं भूलना चाहिए जो मिट्टी की उर्वरता और जल की गुणवत्ता को बनाए रखते हैं। वे पौधों जैसे अन्य जीवों के लिए उपयोगी सामग्री का उत्पादन करके जल और मिट्टी में खनिजों और पोषक तत्वों को बदलते हैं। इसलिए वे अपशिष्टों को नष्ट करके और प्रदूषकों से जल को साफ करके मनुष्यों के लिए उपयोगी गतिविधियाँ करते हैं, क्योंकि वे कुछ कार्बनिक और विषाक्त यौगिकों पर अन्य जीवों के विकास में सक्षम हो सकते हैं। हालाँकि, कुछ बैक्टीरिया ऑक्सीजन की अनुपस्थिति, पीएच और तापमान की चरम सीमा, विकास को समर्थन देने वाले पोषक तत्वों की कमी के कारण सीमित होते हैं। प्रदूषक निरीक्षण की सबसे मुख्य सीमाओं में से एक उनका वास्तविक समय पर पता लगाना है। ऑनलाइन जल गुणवत्ता निरीक्षण हेत् उपयोग किए जाने वाले वाणिज्यिक उपकरण अधिक महंगे हैं और वास्तविक समय की प्रतिक्रिया की तुलना में उनमें समय भी अधिक लगता है। ऑन-लाइन बैक्टीरियोलॉजिकल डिटेक्शन तकनीक और वाणिज्यिक उपकरण के नए समाधान भी वैज्ञानिकों द्वारा प्रस्तुत किए गए हैं।

कुछ क्षेत्रों में जल की कमी का सामना करने के लिए वैकल्पिक जल स्रोत के रूप में जल अलवणता तकनीकी समाधान भी विकसित किए गए हैं। औद्योगिक और घरेलू अपशिष्ट जल उपचार संयंत्र सबसे प्रभावी समाधानों में से एक हैं जिनका उपयोग सिंचाई के लिए समर्पित जल प्रदूषण को नियंत्रित करने के लिए किया जा सकता है, जैसा कि एफएओ द्वारा अभी हाल ही में चर्चा की गई है, बहुत से देशों में आज कल जल के पुन: उपयोग के संदर्भ में अलवणीकरण संयंत्रों का भी उपयोग किया जाता है। इसके अतिरिक्त, ग्रीनहाउस और हाइड्रोपोनिक्स के अंदर सिंचाई के लिए अलवणीकृत जल का भी उपयोग किया जाता है, जब तक इस जल को उर्वरकों के अवशेषों से प्रदूषित माना जाता है तब तक इसे उसी संदर्भ में पुन: उपयोग भी किया जा सकता है। इस तकनीक में जल शोधन के लिए एक छोटे संयंत्र की आवश्यकता होती है। उपचार प्रक्रिया से पहले, जल में उर्वरक के अवशेष और अतिरिक्त नमक मिलाया जाता है जो उत्पाद के विकास को प्रभावित कर सकता है, और इससे जलमार्गों (रासायनिक उर्वरक) में छोड़े जाने वाले कचरे की मात्रा को

कम करके पर्यावरण में सुधार होता है। यद्यपि ये संयंत्र आज भी पूरी तरह से सुलभ नहीं हैं और सभी किसानों की श्रेणियों के लिए इनका व्यापार नहीं किया जा सकता है क्योंकि यह संयंत्र बहुत अधिक महंगे होते हैं, और मूलभूत ढांचे की सुविधा की लागत के कारण हर किसान इनका प्रयोग नहीं कर सकता है परन्तु तकनीकी रूप से यह संभव है, पर इसका व्यापार सभी के लिए नहीं किया जा सकता है, विशेष रूप से कृषि परंपरावादियों के लिए जो जल निकायों से सीधे जल खींचते हैं। फिर भी, सिंचाई में उपचारित जल के उपयोग से सार्वजनिक स्वास्थ्य व पर्यावरण पर और अधिक नकारात्मक प्रभाव पड़ सकता है। यह जल पुनर्चक्रण अनुप्रयोग, मिट्टी की विशेषताओं, जलवायु परिस्थितियों और कृषि पद्धतियों पर निर्भर करेगा। इसलिए यह महत्वपूर्ण है कि इन सभी कारकों को ध्यान में रखा जाए। इसके अलावा कृषि क्षेत्र में पुनर्चक्रित अपशिष्ट जल के उपयोग के जोखिम पर भी विचार किया जाना चाहिए, ताकि पुनर्चक्रण अपशिष्ट जल सुरक्षा सुनिश्चित की जा सके। वस्तुतः पुनर्चक्रित अपशिष्ट जल की जांच विश्व स्वास्थ्य संगठन (डब्ल्यूएचओ), संयुक्त राज्य पर्यावरण संरक्षण एजेंसी (यूएस ईपीए) और एफएओ के उपयोगकर्ता मैनुअल, तथा भारतीय सन्दर्भों में केंद्रीय प्रदृषण नियंत्रण बोर्ड अथवा राज्य स्तरीय प्रदूषण नियंत्रण बोर्ड अथवा भारतीय मानक संगठन के निर्देशानुसार ही हमें इस मार्ग पर आगे बढना चाहिए। ये मानक सिंचाई के लिए उपचारित जल गुणवत्ता मानदंड की अनुशंसा करते हैं। डब्ल्यूएसएन, आईओटी और क्लाउड प्रौद्योगिकियों का उपयोग प्रद्षण का पता लगाने और बड़े पैमाने पर अधिक प्रभावी ढंग से निगरानी और उपयोग करने के लिए भौतिक वस्तुओं को इंटरनेट से जोड़कर अपशिष्ट जल प्रबंधन को सुरक्षित और कुशल बनाने के लिए किया जा सकता है। सीवर संपत्ति के प्रदर्शन की वास्तविक समय का अवलोकन और रिपोर्टिंग को सक्षम करने के लिए स्मार्ट सेंसर आमतौर पर अपशिष्ट जल सुविधा में विभिन्न स्थानों पर लगाए जाते हैं। ये सेंसर जल की गुणवत्ता, तापमान भिन्नता, जल स्तर और जल वेग पर डेटा एकत्र करते हैं। सीवेज में जल के दृषित पदार्थों का पता लगाने के लिए तापमान, पीएच और चालकता जैसे भौतिक रासायनिक मापदंडों को मापने के लिए जल गुणवत्ता सेंसर का उपयोग किया जा सकता है। जल स्तर और जल वेग सेंसर द्वारा लिए गए माप का उपयोग पूरे उपचार संयंत्र में प्रवाह को ज्ञात करने हेत् अल्ट्रासोनिक उत्सर्जन और दबाव ट्रांसड्युसर और लेजर


तकनीक का उपयोग करके जल स्तर का अवलोकन के लिए किया जा सकता है। ढेर सारे ज्ञान व डेटा को एक वेब प्रगणक /एप्लिकेशन का उपयोग करके भंडारण और दृश्यता / विज़्अलाइज़ेशन के लिए क्लाउड सर्वर पर प्रेषित किया जा सकता है जो जानकारी को कार्रवाई योग्य अंतर्दृष्टि में संश्लेषित करता है, इसके अतिरिक्त, ऑपरेटर जल सेंसरों का अवलोकन करते हैं, सुरक्षा नियंत्रण और पूर्वानुमानित रखरखाव संचालित करते हैं। ये प्रौद्योगिकियां वास्तविक समय पर अवलोकन प्रदान करती हैं और नम्नों की लगातार जांच के समय को कम करने में मदद करती हैं। इस लेख में चर्चा किए गए संबंधित कार्य कम लागत और वाणिज्यिक सेंसर का उपयोग करके इलेक्ट्रोकेमिकल, ऑप्टिकल और ध्वनिक आधारित तकनीकों पर निर्भर करते हैं। इन तकनीकों का उपयोग सीधे सुक्ष्म जीव (या कुछ विशेष घटना) की पहचान किए बिना, परिभाषित मूल्य सीमाओं के आधार पर सेंसर (तापमान, पीएच, घुलनशील ऑक्सीजन, आदि) से प्राप्त जल के मापदंडों में वास्तविक समय की विसंगतियों का पता लगाने के लिए किया जाता है। वे पर्याप्त प्रतीत होते हैं. लेकिन उपलब्ध तकनीकों को स्वायत्त संचालन और अनुकूलित प्रतिक्रिया समय के लिए अनुकूलित करने की आवश्यकता एक बड़ी चुनौती है। इसके अलावा, जल की गुणवत्ता और रोगजनकों की उपस्थिति का अनुमान लगाने के लिए डेटा माइनिंग एल्गोरिदम का उपयोग करके डेटा विश्लेषण को इन तकनीकों में एकीकृत किया जाना चाहिए। ऐसा स्वचालित संयोजन लागत प्रभावी हो सकता है और वास्तविक समय में सूक्ष्म जीव का पता लगाने में मदद कर

कृषि में जल प्रबंधन : मुख्य आधुनिक प्रौद्योगिकियाँ स्मार्ट कृषि हेतु स्मार्ट जल प्रबंधन तकनीकी


सेंसर के माध्यम से जल का अवलोकन करने की क्षमता होने से किसानों को फसलों की वृद्धि बढ़ाने की शक्ति मिलती है। इन सेंसरों का उपयोग जल से संबंधित विभिन्न मापदंडों पर सटीक और वास्तविक समय की जानकारी प्रदान कर सकता है ताकि किसान सही समय पर फसलों में प्रभावी ढंग से सिंचन हस्तक्षेप कर सकें अर्थात समय से निर्धारित मात्रा की सिंचाई कर सकें। वायरलेस सेंसर नेटवर्क (डब्लूएसएन) बुनियादी स्मार्ट बिल्डिंग अवधारणाएं, नेटवर्क नोड्स से बनती हैं जिनमें प्रत्येक में एक हटाने योग्य बैटरी द्वारा आपूर्ति

की गई एम्बेडेड प्रणाली या सौर पैनलों जैसी नवीकरणीय ऊर्जा का उपयोग करके गठित किया जाता है। नेटवर्क को एप्लिकेशन की चिंताओं के आधार पर कई टोपोलॉजी (मेश, बस और रिंग) के अनुसार बनाया जा सकता है। डब्ल्एसएन नोड्स संचार प्रोटोकॉल का पालन करते हैं, जैसे कि मैसेज क्यूइंग टेलीमेट्री ट्रांसपोर्ट (एमक्यूटीटी) या कंस्ट्रेन्ड एप्लिकेशन प्रोटोकॉल (सीओएपी), एज कंट्रोल मॉड्यूल से लिंक करने के लिए, यानी इंटरफ़ेस मास्टर से कनेक्ट होता है। एमक्यूटीटी एक मशीन-ट्र-मशीन कनेक्टिविटी प्रोटोकॉल है जिसका उपयोग स्थानीय क्षेत्रों में और कम बैंडविड्थ वाले नेटवर्क के लिए किया जाता है। साइबर-फिजिकल सिस्टम (सीपीएस) निम्न-स्तरीय कंप्युटिंग, डेटा भंडारण और संचार क्षमताओं वाले सेंसर और एक्चुएटर्स का एक संग्रह है। यह एम्बेडेड सिस्टम नियंत्रण इकाइयों को संदर्भित करता है जिन्हें नोड्स कहा जाता है। ये ऊपर की परत में कंप्यूटिंग केंद्रों से कमांड की प्रतीक्षा किए बिना निम्न-स्तरीय संचालन करने में सक्षम हैं। इंटरनेट ऑफ थिंग्स (IoT) एक स्तरित इंटरफ़ेस है जिसमें स्मार्ट तकनीक का एक रूप शामिल है जो एक बड़े इंटरफ़ेस के साथ संचार कर सकता है। यह प्रतिमान एम्बेडेड सिस्टम को आपस में जोड़ता है और दो विकसित प्रौद्योगिकियों को एक साथ लाता है: वायरलेस कनेक्टिविटी और स्मार्ट सेंसर। क्लाउड के साथ IoT का एकीकरण डेटा प्रोसेसिंग और भंडारण के लिए एक लागत प्रभावी तरीका है। इसे आम तौर पर वायरलेस कनेक्शन के माध्यम से एक दसरे के साथ सीधे संचार करने वाली दो परतों में विभाजित किया जाता है: फ्रंटएंड और बैकएंड। पहले में IoT नोड डिवाइस (गेटवे, IoT सेंसर आदि) होते हैं और दूसरे में डेटा स्टोरेज और प्रोसेसिंग सिस्टम (सर्वर) होते हैं जो क्लाइंट डिवाइस से बहुत दूर स्थित होते हैं और क्लाउड बनाते हैं। इस नवीन तकनीक बारे में इसी अंक में एक अन्य आलेख में विस्तार से चर्चा की गयी है। वेब प्रोग्रामिंग या मोबाइल एप्लिकेशन के विकास के संदर्भ में डेटा पुनर्प्राप्त करने के लिए एप्लिकेशन प्रोग्रामिंग इंटरफेस (एपीआई) प्रदान किया जा सकता है। कृषि अनुप्रयोग के लिए क्षेत्र में तैनात इन मुख्य प्रौद्योगिकियों के बीच सहसंबंधों की एक विशिष्ट प्रस्तुति का वर्णन करता है। IoT गेटवे नोड सेंसर द्वारा एकत्र किए गए डेटा को भेजने के लिए इंटरनेट के माध्यम से एक दूरस्थ सर्वर से जुड़ा हुआ है और इस प्रकार, उपयोगकर्ता डेटा पुनर्प्राप्त कर सकते हैं, अपने सेलफोन पर अधिस्चित हो सकते हैं या एक्व्एटर्स पर

निष्पादित होने के लिए कमांड कार्रवाई भेज सकते हैं। वायरलेस IoT नोड की एक विशिष्ट वास्तुकला का वर्णन करता है। सेंसिंग सबसिस्टम के एनालॉग सिग्नल को एक कनवर्टर का उपयोग करके डिजिटल सिग्नल में परिवर्तित किया जाता है, ताकि प्रोसेसिंग सबसिस्टम द्वारा संसाधित किया जा सके और उन्हें आरएफ ट्रांसीवर का उपयोग करके रिमोट सर्वर पर भेजे जाने के लिए ट्रांसिग्शन सबसिस्टम में स्थानांतरित किया जा सके। बिजली आपूर्ति उपप्रणाली तीन उपप्रणालियों के लिए आवश्यक विद्युत ऊर्जा सुनिश्चित करती है।

कृषि अनुप्रयोगों के लिए तैनात एक विशिष्ट वायरलेस सेंसर नेटवर्क

वायरलेस IoT नोड का एक विशिष्ट आर्किटेक्चर

जल संसाधन एवं प्रबंधन के क्षेत्रों में भारत के भविष्य की चुनौतियाँ और दिशाएँ

कृषि और पर्यावरण गुणवत्ता में हाल की अधिकांश चिंताओं ने जल प्रबंधन के प्रभाव पर ध्यान केंद्रित किया है। मनुष्य और औद्योगिक गतिविधियों के कारण होने वाली जल संबंधी कई समस्याएं, जैसे ठोस अपशिष्ट, पर्यावरण और कृषि पर प्रभाव डाल सकती हैं। यह अंततः सतत विकास पक्षाघात और पर्यावरणीय गिरावट जैसी जटिल प्रतिक्रियाएँ उत्पन्न करता है। इसके अतिरिक्त कुछ अन्य क्षेत्रों में जल संसाधनों का दोहन स्वाभाविक रूप से अविकसित हो सकता है, कभी-

कभी अत्यधिक लवणता या अम्लता के कारण, जिससे फसल की वृद्धि और उत्पादकता भी कम हो सकती है। सामान्यतया, कृषि में जल संसाधनों का प्रबंधन सावधानीपूर्वक और टिकाऊ विधियों से किया जाना चाहिए। केंद्रीय अपशिष्ट जल उपचार सुविधाओं की तैनाती हानि में कमी और प्रदूषण की रोकथाम के उद्देश्य से एक अनोखी पहल का एक उदाहरण है। उपरोक्त संदर्भ को देखते हुए हमारा मानना है कि स्मार्ट तकनीकी समाधान स्थापित करने के लिए महत्वपूर्ण प्रयासों को आगे बढ़ाया जाना चाहिए जो पर्याप्त जल प्रबंधन सेवाएं प्रदान करते हैं एवं पर्यावरण को संरक्षित करते हुए किसानों की उत्पादकता में सुधार करने में सक्षम हैं। एक विशेष चुनौती स्मार्ट जल प्रबंधन पायलटों के विकास से संबंधित है जो गारंटी देते हैं कि तकनीकी घटक विभिन्न संदर्भों के अनुकुल होने और विभिन्न स्थानों और सेटिंग्स में दोहराने योग्य होने के लिए पर्याप्त लचीले हैं। दूसरे शब्दों में, उम्मीदवार प्लेटफ़ॉर्म विभिन्न देशों, जलवाय, मिट्टी और फसलों में विभिन्न पायलटों के लिए अनुकूलन योग्य होना चाहिए। पहुंच-योग्यता भी एक चिंताजनक कारक है। यह उपयोगकर्ताओं की एक विस्तृत श्रृंखला के लिए प्लेटफार्मीं तक पहुंच को बढ़ावा देता है, भले ही वे विज्ञान में कितनी भी गहराई से प्रशिक्षित हों. विशेष रूप से विकासशील देशों जैसे हमारे देश भारत में।

अर्ध-शुष्क क्षेत्र में भूमध्यसागरीय कृषि की गुणवत्ता और सुरक्षा में सुधार लाने के उद्देश्य से चल रही एक पहल प्राइमा फाउंडेशन की वॉटरमेड परियोजना है जो सभी हितधारकों और विशेष रूप से किसानों के अनुसार जल की मात्रा और गुणवत्ता बढ़ाने के लिए कृषि में स्मार्ट जल प्रबंधन के लिए नई प्रौद्योगिकियों और दृष्टिकोणों की जांच करके उपरोक्त चुनौतियों पर ध्यान केंद्रित करता है। हमारे देश में भी इसी प्रकार की परियोजनाएं चलाये जाने की आवश्यकता है जिसकी विशिष्ट चुनौतियों में जल प्रबंधन प्रणालियों के लिए ऊर्जा-कुशल उपकरण, बिजली की कम पहुंच वाले भूमध्यसागरीय ग्रामीण पृथक क्षेत्रों में कृषि के लिए उच्च-सटीक सिंचाई प्रणाली, कृषि-प्रणालियों में जल और उर्वरक के उपयोग को कम करना, संख्यात्मक प्रौद्योगिकियों के आधार पर जल पुनर्चक्रण शामिल हैं; और जल प्रबंधन प्रशासन में सुधार के लिए सामाजिक-आर्थिक अध्ययन। हमने पहले ही इस तथ्य को रेखांकित किया है कि जल के पुन: उपयोग और पश्ओं के पीने के जल की चुनौतियों की गहराई से जांच की जानी चाहिए। जैसा कि अगली कड़ी में चर्चा की गई है, हम पूरक अनुसंधान दिशाओं का भी उल्लेख करते हैं।

अनुकूलित डेटा प्रबंधन

अनुसंधान के लिए अंतरसंचालनीय और पुन: प्रयोज्य डेटा एकत्र करने, प्रसंस्करण और/या उत्पन्न करने के लिए पर्याप्त कार्यप्रणाली बनाने से लेकर एक डेटा प्रबंधन योजना आवश्यक है। कृषि में जल के उपयोग के लिए नए विश्लेषणात्मक मॉडल डिजाइन करना प्रबंधकों और निर्णय निर्माताओं के लिए सहायक सिद्ध होगा। मशीन लर्निंग प्रतिमान और जैव-प्रेरित एल्गोरिदम विषम डेटा पर विश्लेषणात्मक मॉडल को उत्तम बनाने और प्रभावी निर्णय लेने के लिए बड़े डेटा पर लागू किए गए उपाय प्रासंगिक हैं। डब्ल्यूएसएन और आईओटी पर आधारित अभिनव निर्णय समर्थन प्रणाली विकसित करना विभिन्न कार्यों में उपयोग के लिए उपयुक्त है, जिसमें कृषि में संपूर्ण जल चक्र का प्रबंधन, जल संसाधनों और जल की मांगों का अवलोकन के साथ-साथ सभी एकत्रित वर्गीकरण के लिए डेटाबेस का निर्माण शामिल है।

नए प्लेटफार्मों का विकास

विभिन्न देशों में डेटा निगरानी के उद्देश्य से किसानों को मोबाइल और वेब-आधारित प्लेटफ़ॉर्म प्रदान किए जा सकते हैं ताकि विभिन्न क्षेत्रों को एक साथ लाया जा सके जहां जल संसाधन डेटा और ज्ञान निवासी किसानों की सहायता करती है। डब्ल्यूएसएन, आईओटी और एज कंप्यूटिंग डिवाइस जैसी प्रौद्योगिकियों का लाभ उठाकर इस तक पहुंचा जा सकता है। दूसरी ओर इसमें अपेक्षित नई उन्नत जल प्रबंधन प्रणालियों का अवलोकन और नियंत्रण को साकार करने के लिए अच्छी तरह से तैयार सॉफ्टवेयर/हार्डवेयर विकास के एकीकरण को ध्यान में रखा जाना चाहिए। सॉफ़्टवेयर-हार्डवेयर कोडसाइन पर लाग् मॉडल-संचालित इंजीनियरिंग (एमडीई) प्रासंगिक है - इसके उच्च लचीलेपन के लिए इसे एआरएम बिग.लिटल डिज़ाइन जैसे कम-शक्ति एम्बेडेड आर्किटेक्चर को एकीकृत करना चाहिए या एज कंप्यूटिंग शक्ति-कुशल डिज़ाइन। दूसरी ओर एप्लिकेशन-विशिष्ट हार्डवेयर संश्लेषण इस डिज़ाइन चुनौती से निपटने के लिए विचार करने के लिए एक और विकल्प है। कुछ वर्षों से ड्रोन और यूएवी जैसे कुछ नवीन तकनीकी प्रतिमानों को अपनाया गया है, विशेष रूप से सटीक कृषि में।

ऐसे प्लेटफार्मों का विकास कुछ चुनौतियों का कारण बनता है जब उन्हें उन्नत ऑप्टिकल इमेजिंग सिस्टम से लैस करने और मिट्टी की गुणवत्ता का विश्लेषण करने के लिए बहुत परिष्कृत छवि प्रसंस्करण तकनीकों को तैनात करने की बात आती है।

विकासशील ऊर्जा-कुशल प्रौद्योगिकियाँ

जल प्रबंधन प्रक्रिया के अन्तर्गत नियंत्रण और निर्णय लेने के लिए ऊर्जा-कुशल वास्तविक समय डेटा प्रोसेसिंग करने की क्षमता अत्यधिक महत्वपूर्ण है। इसलिए अवाष्पशील जैसी विघटनकारी प्रौद्योगिकियां, उभरते अल्ट्रा-लो-पावर कंप्युटिंग प्रतिमानों के साथ एकीकृत, आवश्यक कंप्यूटिंग सिस्टम के कार्यान्वयन के लिए महत्वपूर्ण सक्षम समाधान के रूप में उच्च ध्यान देने योग्य हैं। उदाहरण के लिए सामान्य रूप से बंद कंप्यूटिंग, जिसमें कंप्यूटर सिस्टम के निष्क्रिय घटकों को आवश्यक रूप से बंद करना शामिल है, इसे गैर-वाष्पशील प्रोसेसर के कार्यान्वयन के माध्यम से सक्षम बनाता है। यह अंततः खेतों में तैनात सेंसर के पास, किनारे नोड सीमा के भीतर भारी ऊर्जा बचत और लंबी बैटरी जीवन प्रदान कर सकता है। सेंसर के सामने आने वाली एक और चुनौती निरंतर और विश्वसनीय माप प्रदान करने के लिए अधिकतम बैटरी जीवनकाल है। सेंसर की ऊर्जा खपत को कम करने के लिए उन्नत ऊर्जा संचयन प्रौद्योगिकियों और बिजली-बचत तकनीकों का लाभ उठाया जाना चाहिए। अंत में, कम ऊर्जा खपत वाले विश्वसनीय वायरलेस संचार मॉड्यूल पर ध्यान देना चाहिए।

सिंचन और जल उत्थापन हेतु नए ऊर्जा-कुशल समाधानों का विकास

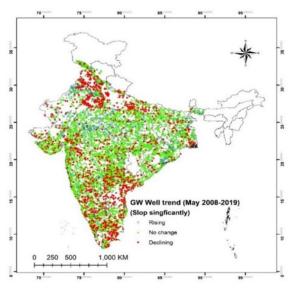
भविष्य की शोध दिशा में आज हमें यह विश्लेषण करना चाहिए कि जल पंप, सेंसर, जल उपचार या जल वितरण प्रणाली के अन्य विद्युत उपकरण फोटोवोल्टिक सेटअप द्वारा उत्पादित बिजली का उपयोग कैसे कर सकते हैं। इसलिए, बिजली-दक्षता की विशेषता वाले नए नए सेंसर विकसित करना ध्यातव्य है। इसके अतिरिक्त जल वितरण प्रणालियों का अवलोकन और नियंत्रण के लिए नए हल्के संचार प्रोटोकॉल पर विकास करना भी महत्वपूर्ण है, उदाहरण के लिए अपशिष्ट जल उपचार संयंत्रों में। एक प्रारंभिक ट्रैक अधिक उन्नत, कुशल और ऊर्जा-कुशल प्रोटोकॉल का उपयोग हो सकता है। यह संचालन और ऊर्जा लागत को कम करके, उन्नत जल चक्र गति और कम जल के हास से अधिक दक्षता लाएगा।

आज हमारा देश विकास और अल्प विकास के दोराहे पर खड़ा है। एक ओर नित नवीन अन्वेषित तकनीकियों की भरमार है तो दूसरी ओर हमारे किसान पारंपरिक साधनों से भी वंचित हैं, नहरी क्षेत्रों में जो किसान हैं उन्हें अधिक जल लगाने का अभ्यास है क्यों कि कम जल से खेती कैसे की जाय इस के बारे में उन्होंने सोचा ही नहीं कभी और दूसरी ओर अधिक वर्षा वाले क्षेत्र के किसान हैं जिनके पास जल निष्काशन की व्यवस्था ही नहीं है, शुष्क और अर्ध शुष्क क्षेत्रों में जल की इतनी कमी हो जाती है कि फसलोत्पादन लगभग असंभव होने लगता है. जल वितरण की असमानता, सिंचाई तंत्रों की दयनीय स्थिति, किसानों का तकनीकी रूप से अज्ञानता, संवेदकों की उच्च लागत, सिंचन तंत्र की उच्च लागत, समय पर ऊर्जा की अनुपलब्धता और ऐसे न जाने कितने ही कारक हैं जिन के कारण भारतीय कृषकों को अल्प दक्षतापूर्ण सिंचन अथवा असिंचन से ही अपने अपने क्षेत्रों से कम लाभ की खेती करना एक अपरिहार्य समझौता ही है जिस के कारण देश की खाद्य सुरक्षा भी लड़खड़ाती हुई दृष्टिगत होती है। एक एक किसान को होने वाली हानि को जोड़ें तो समूचे देश को होने वाली हानि का कुछ कुछ अनुमान हम अवश्य लगा सकते हैं। जल संसाधनों की गिरती हुई स्थिति से हम सब पूर्व परिचित है। ऐसी अवस्था में हम सब को अपने समवेत प्रयासों से भविष्य की तकनीकियों को त्वरित रूप से अपना कर और देश के विभिन्न विभागों द्वारा जल विषयक परियोजनाओं में किसानों को वित्तीय लाभ देते हुए अथवा खेतों को देश की संपत्ति मानते हुए संसाधन संरक्षण और प्रबंधन हेतु आगे आना होगा तथा जल संरक्षण और जल प्रबंधन को देश हित के लिए एक जन आन्दोलन का रूप देने से ही हम जल के मामले में पूर्णतः आत्म निर्भर बन सकेंगे। हमारे समवेत प्रयास इसी दशा और दिशा में रहे यही सुनिश्चित करना इस आलेख का प्रमुख ध्येय है।

भारत में सतत भूजल संसाधन प्रबंधन: तकनीकी और नीति विकल्प एस.के. श्रीवास्तव और प्रभात किशोर

भूजल, भारत की खाद्य और जल सुरक्षा के लिए एक महत्वपूर्ण प्राकृतिक संसाधन है। यह सिंचाई की 64 प्रतिशत, ग्रामीण जल की 85 प्रतिशत और शहरी जल की 45 प्रतिशत आपूर्ति करता है (मुखर्जी, 2020)। देश में वार्षिक निष्कर्षण योग्य भूजल संसाधन 398 बिलियन क्यूबिक मीटर (बीसीएम) होने का अनुमान लगाया गया है, जिसमें से 239 बीसीएम का उपयोग विभिन्न क्षेत्रों द्वारा विभिन्न उद्देश्यों के लिए किया जाता है (सीजीडब्ल्यूबी, 2022)। सभी क्षेत्रों में, कृषि भूजल का प्रमुख उपयोगकर्ता है, जो वार्षिक भूजल निष्कर्षण का 87 प्रतिशत उपभोग करता है। यद्यपि राष्ट्रीय स्तर पर भूजल का वार्षिक निष्कर्षण इसके पुनःपूर्ति स्तर का केवल 60 प्रतिशत है, फिर भी भूजल निष्कर्षण के चरण में व्यापक स्थानिक भिन्नता मौजूद है। उत्तर-पश्चिमी और दक्षिणी भारत के कुछ हिस्सों में भूजल का अत्यधिक दोहन किया जाता है, जबकि देश के अधिकांश पूर्वी क्षेत्रों में इसका कम उपयोग किया जाता है। भूजल का सबसे बड़ा उपयोगकर्ता होने के कारण कृषि को देश में उभरती भूजल चुनौतियों में एक प्रमुख योगदानकर्ता माना जाता है। कृषि में भूजल का अकुशल और व्यर्थ उपयोग अत्यधिक दोहन वाले क्षेत्रों में भूजल संकट का एक प्रमुख कारण है। दूसरी ओर, भ्जल की सामर्थ्य की कमी पूर्वी क्षेत्र में इसके कम उपयोग का मुख्य कारण है, जिसके कारण किसान मजबूत भूजल-कृषि उत्पादकता संबंधों को भुनाने का अवसर खो देते हैं। इसके लिए दुर्लभ भूजल संसाधन के स्थायी प्रबंधन के लिए क्षेत्रीय स्तर पर तकनीकी और नीतिगत उपायों की आवश्यकता है। यह आलेख भूजल स्थिरता की स्थिति पर चर्चा करता है और इस बहुमूल्य प्राकृतिक संसाधन के टिकाऊ प्रबंधन के लिए कृषि क्षेत्र में महत्वपूर्ण तकनीकी और नीति विकल्पों की रूपरेखा तैयार करता है।

भा.कृ.अनु.प. - राष्ट्रीय कृषि अर्थशास्त्र और नीति अनुसंधान संस्थान, नई दिल्ली


ईमेल: shivendraiari@gmail.com

भूजल स्थिरता की स्थिति

2.19 मिलियन कुशल सिंचाई प्रणाली के साथ, भारत दुनिया में सबसे बड़ा भूजल उपयोगकर्ता है। यदि भूजल का दोहन वार्षिक पुनर्भरण से अधिक हो तो भूजल का उपयोग अस्थिर माना जाता है। भूजल के उपयोग में अस्थिरता का संकेत भूजल स्तर में गिरावट से मिलता है। केंद्रीय भूजल बोर्ड (सीजीडब्ल्यूबी) पूरे देश में स्थित लगभग 16000 अवलोकन कुँओं से भूजल स्तर की निगरानी करता है। 2008 से 2019 की अवधि के लिए 7862 कुँओं के आंकड़ों पर आधारित विश्लेषण से पता चला कि देश में अधिकांश कुँओं (64.9%) में भूजल स्तर काफी हद तक स्थिर है और इसमें कोई महत्वपूर्ण कमी नहीं हुई है। पिछले दशक के प्रीमानसून सीजन के दौरान लगभग 24 प्रतिशत कुँओं में भूजल स्तर में उल्लेखनीय कमी देखी गई है।

सीजीडब्ल्यूबी ने 7089 मूल्यांकन इकाइयों (ब्लॉक/तालुक/मंडल/जिले/फिरका/घाटियां) में से 30.34 प्रतिशत को अति-शोषित/गंभीर/अर्ध-गंभीर के रूप में वर्गीकृत किया है। इन क्षेत्रों में भूजल उपयोग के लिए मांग प्रबंधन और आपूर्ति बढ़ाने के उपायों के प्रभावी कार्यान्वयन के साथ-साथ निरंतर निगरानी की आवश्यकता है। वहीं, 2008 से 2019 के दौरान 11.4 प्रतिशत कुँओं में भूजल स्तर में उल्लेखनीय वृद्धि देखी गई। बढ़ते भूजल स्तर वाले क्षेत्रों में भूजल के उपयोग को अनुकूल ऊर्जा नीतियों और फसल प्रबंधन रणनीतियों के माध्यम से बढ़ावा दिया जा सकता है। श्रीवास्तव और अन्य (2018) ने एक समग्र भूजल स्थिरता सूचकांक का निर्माण किया और कृषि में भूजल संसाधनों के टिकाऊ उपयोग के मामले में भारतीय राज्यों को स्थान दिया। राज्यों में, छत्तीसगढ़, ओडिशा, केरल, बिहार और असम को सिंचाई के लिए भूजल उपयोग में सबसे टिकाऊ राज्यों के रूप में पाया गया है, जबिक पंजाब, तमिलनाडु, हरियाणा, तेलंगाना और उत्तर प्रदेश सबसे कम टिकाऊ राज्यों के रूप में उभरे हैं। भूजल की बढ़ती कमी के अलावा, इसकी

गुणवत्ता में गिरावट पारिस्थितिकी तंत्र और मानव स्वास्थ्य के लिए एक बड़ा खतरा बनकर उभरी है।

2008 से 2019 (पूर्व-मानसून) के दौरान भूजल स्तर में रुझान

सीजीडब्ल्यूबी मूल्यांकन (2015) में देश के 15165 स्थानों में 4.6 प्रतिशत, 4.2 प्रतिशत, 13.3 प्रतिशत, 9.2 प्रतिशत और 3.9 प्रतिशत पर आर्सेनिक, फ्लोराइड, नाइट्रेट, लौह और लवणता के साथ भूजल के अत्यधिक संदूषण का पता चला है। , क्रमशः (CAG, 2021)। उर्वरकों और कीटनाशकों का अत्यधिक उपयोग, औद्योगिक और नगरपालिका कचरे का निपटान, समुद्री जल घुसपैठ और भूगर्भिक (भूवैज्ञानिक प्रक्रिया द्वारा उत्पन्न) गतिविधियाँ भूजल की गुणवत्ता को प्रभावित करने वाले प्रमुख कारक हैं।

तकनीकी और नीतिगत उपाय

भूजल संसाधनों के सतत प्रबंधन के लिए क्षेत्रीय स्तर पर भूजल की स्थिति के आधार पर मांग-पक्ष प्रबंधन और आपूर्ति-पक्ष वृद्धि उपायों दोनों के इष्टतम मिश्रण की आवश्यकता होती है। कुछ महत्वपूर्ण तकनीकी और नीतिगत उपायों की रूपरेखा नीचे दी गई है।

सूक्ष्म सिंचाई (एमआई) सिंचाई में भूजल प्रबंधन का एक प्रभावी मांग-पक्ष तकनीकी उपाय है। यह एक फसल तटस्थ तकनीक के रूप में उभरी है जो न केवल जल उपयोग दक्षता में सुधार करती है, बल्कि फसल उत्पादकता और लाभप्रदता भी बढ़ाती है। जलवायु परिवर्तन पर राष्ट्रीय कार्य

योजना के हिस्से के रूप में, भारत सरकार प्रधान मंत्री कृषि सिंचाई योजना (पीएमकेएसवाई) के माध्यम से इस तकनीक को बढ़ावा दे रही है। 31 मार्च, 2022 तक, देश में 14.49 मिलियन हेक्टेयर क्षेत्र एमआई से ढका हुआ था, जो एमआई के तहत संभावित क्षेत्र का लगभग 17 प्रतिशत है। एमआई को अपनाने में राज्यों में काफी भिन्नता है और पांच राज्यों. अर्थात् कर्नाटक, राजस्थान, महाराष्ट्र, आंध्र प्रदेश और गुजरात ने 2022 में एमआई के तहत 70 प्रतिशत क्षेत्र को कवर किया। इन राज्यों में एमआई को अपनाने के निर्धारकों की पहचान करने की आवश्यकता है और संभावित राज्यों में प्रौद्योगिकी को बढ़ावा दिया जाएगा। कभी-कभी, सुक्ष्म सिंचाई को अपनाने से, किसान या तो सिंचित क्षेत्र का विस्तार करते हैं या फसल पैटर्न को जल गहन फसलों की ओर स्थानांतरित करते हैं। परिणामस्वरूप अधिक भूजल का दोहन होता है। दूसरे शब्दों में खेत-स्तर पर हासिल की गई दक्षता जलभृत या समग्र स्तर पर प्रतिबिंबित नहीं होती है। ऐसी स्थिति से निपटने का एक तरीका जल बजट तैयार करना और स्थानीय स्तर पर जल ऑडिट करना है ताकि पानी की मांग और आपूर्ति के बीच संतुलन हासिल किया जा सके।

भारतीय कृषि की भूजल पर निर्भरता तेजी से बढ़ रही है। यह शुद्ध सिंचित क्षेत्र में भूजल स्रोतों की हिस्सेदारी में 1964-65 में 30.36 प्रतिशत से 2019-20 में 62.50 प्रतिशत तक लगातार वृद्धि और सतही जल की हिस्सेदारी में एक साथ गिरावट से परिलक्षित होता है। भूजल पर अत्यधिक निर्भरता सतह और उप-सतह जल प्रवाह को बाधित करती है और जल विज्ञान चक्र में असंतुलन पैदा करती है। सतही और भूजल के एकीकृत उपयोग को बढ़ावा देने से भूजल की मांग कम होगी और इसकी आपूर्ति बढ़ेगी।

सिंचाई के लिए भूजल की बढ़ती मांग को भूजल निष्कर्षण उपकरणों की संख्या में वृद्धि से पूरा किया जाता है। भारत में कुँओं का घनत्व 1982-83 में 42 कुंएं/1000 हेक्टेयर एनएसए से बढ़कर 2017-19 में 158 कुंएं/1000 हेक्टेयर एनएसए हो गया है। दो कुओं के बीच कम दूरी भूजल निष्कर्षण में हस्तक्षेप करती है क्योंकि एक कुंएं का प्रभाव क्षेत्र दूसरे कुंएं के प्रभाव क्षेत्र को ओवरलैप करता है जिससे कुँओं की दक्षता कम हो जाती है। मजबूत विधायी उपायों और क्षेत्र-

स्तर पर सख्त निगरानी के माध्यम से इष्टतम अंतर-कुंएं दूरी बनाए रखी जाएगी।

कुँओं की संरचना काफी हद तक डगवेल और उथले कुँओं से लेकर उच्च क्षमता वाले पंपों वाले गहरे ट्यूबवेलों में बदल रही है। 2000-01 से 2017-19 के बीच देश में गहरे ट्यूबवेलों की संख्या 13 प्रतिशत की वार्षिक वृद्धि दर से बढ़ी है। उच्च क्षमता वाले सबमर्सिबल पंपों से उच्च डिस्चार्ज किसानों को कम जल स्तर वाले स्थानों पर भी इन कुँओं को स्थापित करने के लिए प्रेरित करता है। इससे भूजल की कमी तेज हो जाती है। ऐसी प्रथाओं को प्रभावी शासन के माध्यम से नियंत्रित करने की आवश्यकता है।

भुजल और ऊर्जा उपयोग के बीच घनिष्ठ संबंध या अंतर-संबंध मौजूद है जिसका उपयोग भूजल संसाधनों के स्थायी प्रबंधन के लिए किया जा सकता है। जल-अधिशेष क्षेत्रों में, ऊर्जा की रियायती आपूर्ति का उपयोग किसानों को भूजल संरचनाओं में निवेश करने के लिए प्रोत्साहित करने और सिंचाई के लिए भूजल के उपयोग में तेजी लाने के लिए एक साधन के रूप में किया जा सकता है। दूसरी ओर, देश के कई क्षेत्रों में भूजल संसाधनों के अत्यधिक दोहन के पीछे मुफ्त या रियायती बिजली की उपलब्धता को एक प्रमुख कारक के रूप में पहचाना गया है। इसलिए क्षेत्रीय स्तर पर भूजल संसाधनों की स्थिरता की स्थिति के आधार पर ऊर्जा नीतियों का इष्टतम मिश्रण विकसित करना आवश्यक है। कुल मिलाकर बिजली मूल्य निर्धारण की रणनीति पानी की कमी वाले राज्यों में पूर्ण लागत मूल्य निर्धारण और अधिशेष पानी वाले राज्यों में एक किफायती मूल्य निर्धारण नीति पर ध्यान केंद्रित करेगी ताकि बेहतर कृषि विकास के लिए भूजल संसाधनों का निरंतर उपयोग किया जा सके।

भारत में, भूजल मुख्य रूप से गैर-नवीकरणीय ऊर्जा स्रोतों, यानी बिजली और डीजल का उपयोग करके निकाला जाता है। दूसरी ओर, भारत की जलवायु परिस्थितियाँ सौर ऊर्जा के दोहन के लिए महत्वपूर्ण अवसर प्रदान करती हैं, जो नवीकरणीय और पर्यावरण के अनुकूल और लागत प्रभावी है। सिंचाई के लिए सौर ऊर्जा के उपयोग से बिजली वितरण उपयोगिताओं का वित्तीय बोझ भी कम होगा, जो कृषि के लिए सब्सिडी/मुफ़्त बिजली के कारण भारी नुकसान से पीड़ित हैं। भूजल सिंचाई के लिए सौर ऊर्जा को बढ़ावा देने के लिए प्रधान मंत्री किसान ऊर्जा सुरक्षा एवं उत्थान महाभियान (पीएम-कुसुम) जैसी चल रही योजनाओं का लाभ उथले भूजल स्तर वाले क्षेत्रों में उठाया जा सकता है।

भूजल का उपयोग मूल्य नीति से काफी प्रभावित होता है। पंजाब में एक अध्ययन से पता चला है कि अगर हम सिंचाई के लिए बिजली सब्सिडी हटा देते हैं, तो इससे फसल की खेती में भूजल उपयोग दक्षता में सुधार हो सकता है, लेकिन यह कम पानी की खपत वाली फसल के साथ पानी की अधिक खपत वाले धान का विकल्प नहीं बन सकता है क्योंकि धान आर्थिक रूप से सबसे व्यवहार्य और स्थिर बनकर उभरा है। सुनिश्चित मूल्य नीति व्यवस्था के कारण फसल (श्रीवास्तव एट अल, 2017)। इसलिए, भूजल प्रबंधन समाधानों को भूजल-ऊर्जा और खाद्य नीतियों के बीच संबंध को स्वीकार करना चाहिए और एक समग्र दृष्टिकोण शामिल करना चाहिए जहां भूजल, ऊर्जा और खाद्य नीतियां एक-दूसरे की पूरक हों।

भूजल उपयोग के स्थायी प्रबंधन के लिए मांग-पक्ष उपायों के साथ-साथ आपूर्ति-बढ़ाने वाले उपाय जैसे कृत्रिम भूजल पुनर्भरण, वाटरशेड कार्यक्रम आदि भी शामिल किए जाएंगे।

संविधान में, भूजल का प्रशासन एक राज्य का विषय है जो अंतर-राज्य जलभृतों के प्रबंधन को एक मुश्किल मामला बनाता है। केंद्र सरकार राज्य सरकारों द्वारा अधिनियमन और कार्यान्वयन के लिए भूजल प्रबंधन से संबंधित मॉडल विधेयक तैयार करती है। हाल ही में, केंद्र सरकार ने मॉडल भूजल (टिकाऊ प्रबंधन) विधेयक, 2017 तैयार किया है जिसका उद्देश्य सतह और भूजल प्रबंधन, जलभृत संरक्षण को एकीकृत करना और नीचे से ऊपर विनियमन ढांचे को विकसित करना है। देश में विधायी उपायों के सफल कार्यान्वयन और भूजल संसाधनों के प्रशासन के लिए एक मजबूत केंद्र-राज्य सरकार का सहयोग महत्वपूर्ण है।

उचित समय पर निश्चित सिंचाई सुविधा किसानों की आय दो गुना करने में सहायक बीरपाल सिंह

देश के प्रधानमंत्री आदरणीय श्री नरेंद्र मोदी जी चाहते हैं कि हमारा देश "आत्मिनर्भर" होना चाहिए और इस परिपेक्ष्य में आत्मिनर्भर भारत के लिए आत्मिनर्भर किसान भी जरूरी है। हाल के दिनों में एक अच्छी बात सामने आई है कि अब किसान अपने राज्य के बाहर किसी भी बाजार में अपनी फसल अथवा कृषि उत्पाद बेच सकते हैं। कोल्ड स्टोरेज (शीतगृह) बनाने और किसानों को बाजार से जोड़ने के लिए 1 लाख करोड़ रूपये का निवेश किया जायेगा और साथ ही गाँवों के पास ही स्थानीय उत्पादों से जुड़े उद्योग भी विकसित किये जायेगें।

हमारे देश के उप-राष्ट्रपित श्री ऍम वेंकैया नायडू जी ने भी कहा था कि अन्नदाता किसानो का अभिनंदन करे देश महामारी का सामना करने में उनका योगदान डाक्टरों, स्वास्थ्य कर्मियों और सुरक्षाबलों जितना ही है | प्रयास होना चाहिए कि किसानों की आमदनी दोगुनी करने के लक्ष्य को प्राप्त किया जाये और कृषि को लाभकारी बनाया जाये।

देश में कोरोना महामारी की वजह से 25 मार्च, 2020 को देश के प्रधानमंत्री आदरणीय श्री नरेंद्र मोदी जी ने सारे देश में लॉकडाउन की घोषणा करते हुए कहा था कि लक्ष्मण रेखा नहीं लाघंनी है और इसीलिए देश के सभी छोटे—बड़े कार्य उदाहरणार्थ, दैनिक दिहाड़ी मजदूर से लेकर हवाई सेवाओं तक स्थिगत रही (लगभग 65 दिन), और इसी कारण सभी वर्गों के लोग केंद्र सरकार से राहत पैकेज की मांग कर रहे थे और वह पैकेज उनको दे भी दिया गया, लेकिन अन्नदाता की तरफ से इस बाबत आज तक कोई मांग नहीं आई। प्रत्येक किसान का मुख्य उद्देश्य होता है कि अपने प्रक्षेत्र(फार्म) से अधिकतम लाभ प्राप्त कर सके और यह तभी सम्भव है, जबिक कम खर्च या लागत से अधिक उत्पादन लिया जाये।

जल प्रौद्योगिकी केंद्र भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली (सेवानिवृत)

ईमेल: singhbp024@gmail.com

अनाज मंडी में गेहूं की बिक्री का दृश्य

पूर्वी यमुना नहर (ताजेवाला से दिल्ली नोली तक) स्रोत: सिंचाई विभाग,उत्तर प्रदेश

उत्पादन के अनेक निवेशों में जल प्रबंधन सबसे महत्वपूर्ण है। यदि किसान ने जुताई करने के बाद उसमे पर्याप्त मात्रा में खाद एवं उर्वरकों और अच्छे बीज आदि का प्रयोग करके फसल कि बुवाई की है परन्तु उसके पास सिंचाई के पानी की सुविधा समय पर नहीं है तो फसल उत्पादन के बाकी निवेशों का कोई महत्त्व नहीं है। इसी क्रम में गेहूं की फसल में पानी के विभिन्न स्रोतों से सिंचाई के पानी के उपयोग और दक्षता का अध्ययन करने के लिए पूर्वी यमुना नहर के कमांड क्षेत्र को चुना गया था। फसल उत्पादन में जितनी भी लागते लगती है उनमें सबसे महत्वपूर्ण सिंचाई जल ही है और यदि सिंचाई जल का बंटवारा एवं प्रबंधन में ही खामियां हों तो किसानों को समय पर सतही सिंचाई जल नहीं मिलने के कारण उनको सिंचाई के अन्य स्रोतों को खोजना पड़ता है जैसे भूमिगत जल। इस भूमिगत जल

की प्राप्ति के लिए किराये की बिजली की ट्यूबवैल, निजी बिजली की ट्यूबवैल, डीजल ट्रेक्टर, आदि का प्रयोग करना पड़ता है। सिंचाई के इन चारों साधनों की गहनता से अध्ययन करने के बाद, बात निकलकर आई कि जिस साधन से किसान को सिंचाई जल उचित समय पर निश्चित सुविधा उपलब्ध हो जाता है तो उसी साधन से फसल की अधिक उपज मिली, हालांकि यह अलग बात है कि सिंचाई साधन सस्ता था या मंहगा। यहां यह कहना उचित होगा कि प्रत्येक सिंचाई स्रोत द्वारा औसत पैदावार (क्विंटल/ हेक्टेयर), वितरिका नहर, किराये की बिजली की ट्यूबवैल, निजी बिजली की ट्यूबवैल और डीजल इंजन से क्रमशः 40.00, 42.66, 46.35 और 44.34 कुंतल/हैक्टेयर निकली थी | साथ ही इससे यह भी साबित हुआ कि निजी बिजली की ट्यूबवैल ऐसा सिंचाई स्रोत था जिससे किसान समय पर फसल में सिंचाई देने में सक्षम था और इसीलिए पैदावार अन्य सिंचाई स्रोतों से अधिक प्राप्त हुई थी। उपरोक्त सिंचाई साधनों से प्रति हैक्टेयर शुद्ध आय क्रमशः 10625, 11500,13040 और 11540 रूपये प्राप्त हुई।

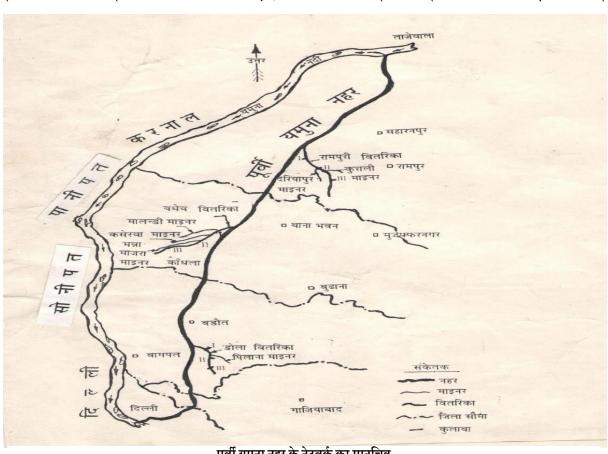
सिंचित क्षेत्रों की सभी चार श्रेणियों में से, प्रति हैक्टेयर शुद्ध आय और शुद्ध आय-व्यय के अनुपात के मामले में किसानों के लिए स्वयं का बिजली-चालित ट्यूबवैल सिंचित स्रोत सबसे अधिक अनुकूल था, जो क्रमशः 13040 बिजली-चालित ट्यूबवैल और डीजल इंजन की दो श्रेणियों में, जो मुख्य रूप से गाँवों में पहले से ही प्रचलित प्रति घंटे की दर से इन स्रोतों का पानी जरूरत मंद खरीद कर अपनी फसलों की सिंचाई करते हैं, प्रति हैक्टेयर शुद्ध आय और शुद्ध आयव्यय अनुपात में बहुत अंतर नहीं था, जो कि रूपये 11500 और रूपये 11540 और क्रमशः 0.77 और 0.74 था।

सिंचाई के हिसाब से देखा जाए तो पानी के स्रोत वाले किसानों यानि खुद के बिजली के ट्यूबवैल, प्रति यूनिट क्षेत्र में अधिकतम उत्पादन करने के लिए खेतों में मिट्टी की पर्याप्त नमी बनाए रखते हैं। इसके विपरीत जो किसान सिंचाई का पानी दूसरे किसानों से खरीद कर अपनी फसलों की सिंचाई करते हैं तो वे किसान अनुपात के आधार पर फसल को कम गहरी सिंचाई प्रदान करते हैं और इसीलिए प्रति हैक्टेयर कम उपज प्राप्त करते हैं। सिंचित क्षेत्र से उच्च कुल उपज प्राप्त करने के लिए और पानी की उत्पादकता बढ़ाने के उद्देश्य से पानी की समय पर उपलब्धता पर बेहतर नियंत्रण होना चहिए और मौजूदा सतही जल संसाधन की दक्षता में सुधार करने की आवश्यकता है।

सतही जल को उचित बटवारे एवं प्रबंधन के लिये एक आयोग 1974 –75 में जिसको CADA कमांड एरिया डवलपमेंट अथॉरिटी कहते हैं बनाया गया था जिसका उद्देश्य

निजी बिजली की ट्यूबवैल द्वारा गेहूं की फसल में सिंचाई

और 0.84 रुपये था। इसके विपरीत, नहर सिंचित क्षेत्र में 10625 रुपये की शुद्ध आय और 0.75 रुपये के शुद्ध आयव्यय अनुपात के साथ कम से कम लाभप्रदता पाई गई है। यह नहर के पानी की उपलब्धता से जुड़ी अनिश्चितता के परिणामस्वरूप कम उपज का कारण था किराए पर लिए गए


उपलब्ध सतही जल को नहरों के द्वारा किसानो के बीच इस तरह बांटा जाये कि उस उपलब्ध सिंचाई जल के द्वारा अधिकतम क्षेत्र को सींचा जा सके ताकि हर खेत को पानी मिले और पैदावार भी अधिक से अधिक प्राप्त की जा सके | उस पानी पर सिंचित फसल (Wheat -1997) पर मामूली

सा लगान राज्य सरकार प्रति हैक्टेयर किसानों से फसल पकने के बाद वसुला जाता था जैसे नहर विभाग (Distributary) 287 रूपये प्रति हैक्टेयर, बिजली की ट्यूबवैल निजी+किराये की 677 (खर्चा प्रति हैक्टेयर) और कैनाल + भूमिगत 852 रूपये (प्रति हैक्टेयर सिचाई खर्चा) | इसके बाद 2014 में नहर सिचाई (Wheat) प्रति हैक्टेयर लगान 956 रूपये प्रति हैक्टेयर तक पहुंचा जो प्रति हैक्टेयर राज्य सरकार ने वसूला अब इसमें 10 फीसदी की बढ़ोत्तरी प्रतिवर्ष करने का प्रावधान है।

इससे किसान भी सिंचाई जल को अपनी फसलों में बड़े ही

कारण है कि भूमिगत जल का स्तर भी बराबर नीचे गिर रहा है ।

प्रधानमंत्री कृषि सिंचाई योजना (PMKSY) का मुल उद्देश्य भी इसी कथन पर आधारित है कि PER DROP -MORE CROP । कमांड एरिया डवलपमेंट अथॉरिटी (CADA) का भी यही उद्देश्य था, लेकिन आज कम से कम उत्तर प्रदेश में इस अथॉरिटी का अस्तित्व पहले की सरकार द्वारा लगभग समाप्त कर दिया गया, जिसके कारण नहरों के पानी का किसानों से कोई लगान नहीं वसूला जा रहा है और किसान भाई भी सिंचाई जल को उचित मात्रा एवं उसकी कोई

पूर्वी यमुना नहर के नेटवर्क का मानचित्र

उचित मात्रा में उपयोग करते थे। इस तरह का एक अध्ययन हम दो लोगों ने उत्तर प्रदेश में पूर्वी यमुना नहर कमांड क्षेत्र में लेकर किया था जिसका मुख्य उद्देश्य "सिंचाई जल उपयोग दक्षता" का पता लगाना था। इस अध्ययन की रिपोर्ट कमिश्नर कमांड एरिया डेवलपमेंट अथॉरिटी को भेजी थी और इसी अध्ययन पर आधारित जितनी भी रिपोर्ट अथॉरिटी के पास सारे भारत से आई थीं, उनमें प्रथम स्थान हमारे अध्ययन को दिया गया था। सतही जल के न मिलने के कारण भिगत जल पर ही सारी सिंचाई का दबाव आ जाता है और यही कीमत भी नहीं समझ रहे हैं।

जल संसाधनों की प्रचुर उपलब्धता किसी देश के कृषि विकास की आधार शिला होती है | पृथ्वी पर कुल जल जिसकी मात्रा 146 करोड़ घन किलोमीटर के लगभग है और यह हमारे 70% धरातल को ढके हुए है इसके बावजूद भी प्रति व्यक्ति पानी की मात्रा लगातार घटती जा रही है। सन 1955 में प्रति व्यक्ति 5200 घनमीटर पानी उपलब्ध था जो अब घटकर 2200 घनमीटर ही रह गया और अनुमान है कि वर्ष 2025 में केवल 1500 घनमीटर ही रह जायेगा।

मार्च महीने के अंत में कोरोना महामारी को नियंत्रित करने के लिए लॉकडाउन सारे भारत में लगाते समय देश के प्रधानमंत्री आदरणीय श्री नरेंद्र मोदी जी ने कहा था कि लक्ष्मण रेखा नहीं लांघनी है लेकिन किसान एक ऐसा मजबर वर्ग है जिसको अपने भोजन के साथ देशवासियों के भोजन की भी चिंता सता रही थी और इसी कारण लॉक-डाउन में देश की सारी जनता अपने घरों में छिपी थी परन्तु अकेला किसान खेतों में अपनी फसल बो या काट रहा था | कृषि जनगणना की रिपोर्ट के अनुसार वर्ष 2010 -11 में खेती का रकबा 15 करोड़ 95.9 लाख हैक्टेयर था वर्ष 2015-16 में खेती का रकबा 15 करोड़ 71.4 लांख हैक्टेयर, जिसमें 1.53 फीसदी की गिरावट आयी | 2010-11 में देश में खेती जोतों की कुल संख्या 13.80 करोड़ से बढकर 2015-16 में 14.6 करोड़ हो गई है, यहाँ इसमें 5.33 प्रतिशत की वृध्दि हुई है | 2010-11 की तुलना में 2015-16 में औसत जोत का आकार 1.15 से घटकर 1.08 हैक्टेयर रह गई।

कृषि जनगणना रिपोर्ट के अनुसार 2010-11 में कृषि जोते रखने वालों में महिलाओं का हिस्सा 12.79 प्रतिशत से बढ़कर वर्ष 2015-16 में 13.87 प्रतिशत हो गया । खेती के रकबे के हिसाब से महिलाओं का हिस्सा 10.36 प्रतिशत से बढ़कर 11.57 प्रतिशत हो गया | कुल जोतों में लघु एवं सीमांत जोत (दो हैक्टेयर से कम जोत) का अनुपात

86.21 प्रतिशत है। वर्ष2010-11 में ऐसी जोतों का हिस्सा 84.97 प्रतिशत था। कुल कृषि क्षेत्र में सीमांत और लघु किसानों के पास जमीन का हिस्सा इस समय 47.34 प्रतिशत है, जो वर्ष 2010-11 में 44.31 प्रतिशत था। वर्ष 2015-16 में अर्ध मध्य और मध्य आकार वाली जोतों (2 से 10 हैक्टेयर) का हिस्सा संख्या के हिसाब से 13.22 प्रतिशत और क्षेत्रफल के हिसाब से 43.61 प्रतिशत हिस्सा था। वर्ष 2015-16 में बड़ी जोत(10 हैक्टेयर से ऊपर) वाले किसान 0.57 प्रतिशत है और उनके पास कुल कृषि रकबे का 9.04 प्रतिशत है। वर्ष2010 -11 में उनकी संख्या 0.71 प्रतिशत और उनका कृल रकबे का 10.59 प्रतिशत था।

जहाँ तक जनसंख्या वृध्दि का सवाल है जनसंख्या जनगणना के अनुसार भारत में सन् 1991, 2001, 2011 में जनसंख्या क्रमशः 83, 102, 121 करोड़ थी और अब 2021 में 135 करोड़ से भी अधिक जनसंख्या होने की सम्भावना है। इस प्रकार सालों साल बढ़ती जनसंख्या, दिनों दिन घटता कृषि रकबा और सिंचाई के पानी की उपलब्धता में कमी को ध्यान में रखते हुए अब समय आ गया है कि जनसंख्या पर नियंत्रण, कृषि में प्रति इकाई अधिक पैदावार और सिंचाई जल का अनुकूल उपयोग अति आवश्यक हो गया है।

मोटे अनाजों का बेहतर उत्पादन वीरेन्द्र कुमार, पी. एस. ब्रह्मानंद एवं अनिल कुमार मिश्र

मोटे अनाजों का देश की खाद्य, पोषण एवं आजीविका सुरक्षा में महत्वपूर्ण योगदान रहा है। संयुक्त राष्ट्र संघ के खाद्य एवं कृषि संगठन द्वारा वर्ष 2023 को भारत के नेतृत्व में अंतर्राष्ट्रीय पौष्टिक अनाज वर्ष के रूप में मनाया गया। जो हमारे लिए आंनद, गर्व और सम्मान का विषय है। यूएनओ में भारत के इस प्रस्ताव का विश्व के 70 से ज्यादा देशों ने समर्थन किया है। इस दौरान मोटे अनाजों के गुणों व खेती के प्रचार प्रसार पर विश्व भर में काम होगा। भारत विश्व में सबसे ज्यादा मिलेट्स पैदा करने वाला देश है। सम्पूर्ण विश्व में कुल मिलेट्स उत्पादन का लगभग 41 प्रतिशत भारत में पैदा होता है। इसके बाद क्षेत्रफल व उत्पादन की दृष्टि से माली मिलेट्स का उत्पादन करने वाला दूसरे नंबर का देश है। प्राचीनकाल से ही मोटे अनाज हमारी संस्कृति, परंपराओ और सभ्यता का अभिन्न अंग रहे है। हमारे देश में इन अनाजों को खाये जाने का हजारो साल पुराना इतिहास है। इनका वर्णन हमारे प्राचीन वैदिक साहित्य में भी मिलता है।

बदलते परिवेश में ज्वार, बाजरा, सांवा, कोदो, रागी, कुटकी, कांगनी, और चीना जैसे मोटे अनाज यानि मिलेट्स आज के दौर के सुपरफूड है। गत कई वर्षों से इन अनाजों का महत्व बढता ही जा रहा है। भारत में हजारों वर्षों से मोटे अनाजों की खेती होती आ रही है। दक्षिण भारत के पूर्वी तट पर इनकी खेती बहुतायत में की जाती है। मोटे अनाज पारंपरिक एनर्जी बार है। भारत का सबसे लोकप्रिय मिलेट बाजरा है। यह विशेषतौर पर राजस्थान और उत्तर-पश्चिम भारत में उगाया जाता है। यह आयरन का सबसे अच्छा स्रोत है। कर्नाटक और आंध्र प्रदेश के रायलसीमा इलाके में रागी प्रमुख रूप से उगायी जाती है। बुंदेलखंड, छत्तीसगढ और मध्य प्रदेश के गरीब इलाकों में कोदों आज भी आम आदमी का भोजन है।

जल प्रौद्योगिकी केंद्र भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल: v.kumardhama@gmail.com भारतीय कृषि एवं भोजन में मोटे अनाजों का महत्वपूर्ण स्थान रहा है।

आज देश के पांच सितारा होटलों में टॉप शेप मोटे अनाजों का प्रयोग बड़े पैमाने पर सिब्जियों और सलाद में कर रहे हैं। आज भी देश के आदिवासी, सीमावर्ती और पहाड़ी इलाकों में इनकी खेती बहुतायत में की जाती है। गरीबों के लिए तो पेट भरने वाले ये अनाज सस्ते और पोषण से भरपूर है। लेकिन अब इसने उच्च शर्करा स्तर, मोटापे और पाचन से जुड़ी परेशानियों से जूझ रहे लोगों की थालियों में जगह बना ली है। जिन क्षेत्रों में चावल और गेंहू की खेती नहीं हो सकती, वहां किसान और आदिवासी समुदाय मिलेट्स पर निर्भर है। यहां तक कि समृद्ध इलाकों में भी यह खानपान की संस्कृति का हिस्सा बनते जा रहे है। सबसे बड़ी बात यह है कि इन्हें व्रत में भी खा सकते है। क्योंकि पोषक तत्वों से भरपूर होने के कारण शरीर में होने वाली कमजोरियों को दूर किया जा सकता है।

मिलेट्स से तात्पर्य

भारतीय मिलेट्स पौष्टिकता से भरपूर व सूखा सिहण्णु फसलों का एक समूह है। जो ज्यादातर भारत के शुष्क व अर्ध-शुष्क क्षेत्रों में उगाये जाते है। यह प्रेमिनी या पोएसी कुल के एक वर्षीय पौधे है। जिनके बीज छोटे आकार के होते है। जो उत्तर भारत में खरीफ के मौसम में जबकि दक्षिण भारत में खरीफ व रबी दोनो मौसम में उगाये जाते है। भारतीय मिलेट्स पौष्टिकता के मामले में गेंहू व चावल से बेहतर व पोषक तत्वों जैसे प्रोटीन, विटामिन और खनिजों से भरपूर है। यह ग्लूटेन मुक्त भी होते है और इनका ग्लाइसेमिक इंडेक्स कम होता है। जो इन्हें सीलिएक रोग या मधुमेह रोगियों के लिए आदर्श बनाता है।

मोटे अनाजों की खेती का महत्व

खाद्य सुरक्षा कानून में मोटे अनाजों के वितरण से न केवल खाद्य व पोषण सुरक्षा सुनिश्चित होगी बल्कि इससे विविधतापूर्ण खेती को भी बढ़ावा मिलेगा। जिससे मिट्टी की उर्वरता में भी वृद्धि होगी। साथ ही उत्तर-पश्चिम भारत में निरंतर गिरते भूजल स्तर मे भी कमी आयेगी। इसकी जरूरत लम्बे अरसे से महसूस की जा रही थी। क्योंकि हरित क्रांति में खाद-बीज से लेकर उपज की बिक्री तक में चुनिंदा फसलों को

प्राथमिकता दी गयी। जिसके परिणामस्वरूप गेहूं, धान, गन्ना व कपास के क्षेत्रफल में तेजी से बढ़ोतरी हुई।

की प्रति हैक्टेयर उपज में आ रही गिरावट या स्थिरता को दूर करने में भी मदद मिलेगी।

पोषक तत्वों की दृष्टि से इन्हें गुणों की खान कह सकते हैं। प्रोटीन व रेशे की भरपूर उपस्थिति के कारण मोटे अनाज डायिबटीज, हृदय रोग, उच्च रक्त चाप का खतरा कम करते हैं। इनमें खिनज तत्व भी पर्याप्त मात्रा में पाये जाते हैं। जिससे कुपोषण की समस्या को दूर करने में मदद मिलेगी। मोटे अनाजों से बने खाद्य पदार्थों में चावल से निर्मित खाद्य पदार्थों की अपेक्षा कई गुना ज्यादा कैल्शियम होता है। बाजरा में सबसे ज्यादा आयरन पाया जाता है। जबिक बाजरा व ज्वार की रोटी के साथ चने का साग प्रोटीन के मामले में अग्रणी भोजन है। अनेक लाभों के बावजूद इनकी सरकारी खरीद, भंडारण व वितरण की कोई व्यवस्था नहीं है। इसलिए किसान इन फसलों की खेती मजबूरी में करते हैं।

वितरण एवं खपत

विश्व के 131 देशों में मोटे अनाजों की खेती की जाती है। मोटे अनाज अफ्रीका और एशिया के लोगो के लिए

सारणीः मोटे अनाजों का पोषण मूल्य (100 ग्राम खाद्य भाग में)

अनाज का	प्रोटीन	वसा	कार्बोहाइड्रेट	ऊर्जा(किलो	कैल्सियम	आयरन
नाम	(ग्राम)	ग्रा.	(ग्राम)	कैलोरी)	(मि.ग्राम)	(मि.ग्राम)
ज्वार	10.4	3.1	70.7	349	25	5.4
बाजरा	11.8	4.8	67.0	361	42	11.0
रागी	7.7	1.5	72.6	328	350	3.9
कोदों	9.8	1.6	66.6	353	35	1.7
कुटकी	8.7	5.3	75.7	340	16	2.8
सावां	6.93	2.0	80.6	333	23.2	6.9
कांगनी	10.3	3.1	69.9	349	30.1	3.7

परन्तु मोटे अनाजों के अन्तर्गत क्षेत्रफल सिकुड़ता गया। जिसका नतीजा यह निकला कि ज्वार, बाजरा, सावां, रागी, कोदो, जैसे पौष्टिक व रेशेदार अनाज भोजन की थाली से गायब हो गये। इसके अलावा भूजल स्तर में गिरावट, मिट्टी में पोषक तत्वों की कमी व खरपतवारों की बहुतायत जैसे समस्याएं पैदा हो गयी। मोटे अनाजों की खेती से न केवल भूजल व ऊर्जा की खपत में कमी आयेगी, बल्कि धान-गेहूं प्रमुख खाद्यान्न रहे हैं। भारत द्वारा एशिया का 80 प्रतिशत तथा विश्व का 20 प्रतिशत पौष्टिक अनाज पैदा किया जाता है। भारत में लगभग 140 लाख हैक्टेयर क्षेत्र में 176 लाख टन मोटे अनाजों का उत्पादन होता है। जबिक विश्व में 717 लाख हैक्टेयर से ज्यादा क्षेत्र में लगभग 863 लाख टन मोटे अनाजों का उत्पादन होता है। वर्ष 2017-18 में मोटे अनाजों की उत्पादकता 1163 कि.ग्रा. प्रति हैक्टेयर थी जो वर्ष 2020-21 में 1239 कि.ग्रा. प्रति हैक्टेयर हो गयी है। मोटे

अनाजो को अलग-अलग राज्यों में अलग नाम से जाना जाता है। मोटे अनाजों की खेती दक्षिणी भारत, उत्तरी भारत के मैदानी क्षेत्रों से लेकर ऊंचाई वाले पर्वतीय क्षेत्रों तक की जा सकती है। ये न केवल विषम परिस्थितियों में अच्छी पैदावार देते हैं बल्कि पूरी पारिस्थितिकी को स्थायित्व भी प्रदन करते है।

सरकारी प्रयास और योजनाएं

ज्वार, बाजरा, कोदो-कुटकी, सावां एवं रागी की उत्पादकता बढाने के प्रयास किये जा रहे हैं। इसके लिए तकनीक जानकारी, उच्च गुणवत्ता के बीज व सीड बैंक की स्थापना में मदद के लिए इंडियन इंस्टिटयूट ऑफ मिलेट रिसर्च, हैदराबाद की मदद ली जा रही है। न्यूनतम समर्थन मूल्य पर मोटे अनाजों की खरीद व आदान सहायता देने के साथ प्रोसेसिंग एवं मार्केटिंग की पहल, मिलेट के प्रसंस्करण और को रोजगार मिलेगा। इसके अलावा भारत सरकार द्वारा वर्ष 2018 को राष्ट्रीय मिलेट वर्ष के रूप में मनाया जा चुका है।

केंद्रीय बजट 2023-24 में मोटे अनाजों की खेती को प्रोत्साहन देने के लिए 'श्री अन्न योजना' की शुरूआत की गयी है। श्री अन्न का मतलब सभी अन्नों में श्रेष्ठ यानि धान व गेंहू से भी बेहतर है। हाल ही में सहकारी क्षेत्र की उर्वरक बनाने वाली संस्था इफको ने इंडियन इंस्टिटयूट ऑफ मिलेट रिसर्च के साथ मिलेट्स की जैव संवर्धित किस्मों को विकसित करने के लिए करार किया है। जिससे देश में भूखमरी व कुपोषण की समस्या दूर की जा सके। मन की बात कार्यक्रम में माननीय प्रधानमंत्री ने कृषि के सतत् विकास हेतु मोटे अनाजों के अच्छे बीजों को अपनाये जाने और इन फसलों के उत्पादन बढाने पर जोर दिया। इसके अलावा मोटे अनाजो को ग्लोबल ब्रांड बनाने व खाद्य टोकरी में इन पोषक अनाजों की

सारणी - भारत में उगाये जाने वाले प्रमुख मोटे अनाज

फसल का अंग्रेजी नाम	हिंदी/स्थानीय नाम	वैज्ञानिक नाम	प्रमुख उत्पादक क्षेत्र
पर्ल मिलेट	बाजरा, बजरी	पेनीसेटम ग्लूकम	राजस्थान, उत्तर प्रदेश, हरियाणा, गुजरात,
			महाराष्ट्र, तमिलनाडू
सोरघम	ज्वार, जोला	सोरघम बाईकलर	महाराष्ट्र, कर्नाटक, मध्य प्रदेश, आंध्र प्रदेश,
			तमिलनाडू
फिंगर मिलेट	मंडुवा या रागी	इल्यूसिन कोराकना	कर्नाटक, उत्तराखंड, तमिलनाडू, महाराष्ट्र, आंध्र
		एल.	प्रदेश
बार्नयार्ड मिलेट	सावां, सवां	एकाइनोकोला	उत्तराखंड, अरूणाचल प्रदेश, नागालैंड, मध्य
		एस्क्यूलेंटा	प्रदेश, उत्तर प्रदेश, तमिलनाडू
लिटिल मिलेट	कुटकी	पैनिकम सुमाट्रेंस	मध्य प्रदेश, तमिलनाडू, कर्नाटक, छत्तीसगढ,
			झारखंड
फोक्सटेल मिलेट	कांगनी, काकुन	एस्टेरिया इटालिका	आंध्र प्रदेश, कर्नाटक, अरूणाचल प्रदेश,
		एल.	महाराष्ट्र, राजस्थान, तमिलनाडू
कोदों मिलेट	कोदों, कोदोन	पास्पालम	मध्य प्रदेश, छत्तीसगढ, तमिलनाडू, महाराष्ट्र,
		क्रोबिकुलेटम एल.	उत्तर प्रदेश
प्रोसो मिलेट	चीना, चेनो	पैनिकम	महाराष्ट्र, बिहार, उडीसा, राजस्थान, तमिलनाडू
		मिलियेसियम एल.	

गुणवत्ता सुधार के लिए प्रोसेसिंग यूनिट की स्थापना की जा रही हैं। इससे किसानों, महिला समूहों और बेरोजगार युवाओं हिस्सेदारी बढाने के लिए माननीय प्रधानमंत्री ने 18-19 मार्च, 2023 को पूसा परिसर स्थित नॉस कॉम्पलेक्स में श्री अन्न पर एक अंतरराष्ट्रीय सेमिनार का आयोजन भी किया गया था।

मिट्टी और जलवायु

मोटे अनाजों की खेती के लिए अच्छी जल-निकासी वाली कम उर्वर व बलुई दोमट से लेकर दोमट मिट्टी अधिक उपयुक्त है। इसकी खेती शुष्क और शीतोष्ण क्षेत्रों से लेकर गर्म व तर जलवायु तथा 50-60 सेमी. वार्षिक वर्षा वाले क्षेत्रों में अच्छी तरह की जा सकती है। लेकिन यदि फसल पर फूल आने की अवस्था में वर्षा हो जाए तो फूल धुल जाने के कारण दानों का भराव कम हो जाता है। बाजरे की फसल भारी वर्षा वाले उन क्षेत्रों में अच्छी तरह नहीं ली जा सकती, जहां पानी ठहर जाता है। इसलिए निचली सतह वाले इलाकों में यह फसल नहीं उगानी चाहिए। बाजरे में बालियों में दाने आने की अवस्था में यदि नमी अधिक और तापमान कम हो तो अर्गट बीमारी के प्रकोप की संभावना रहती है। इन फसलों के लिए सबसे उपयुक्त तापमान 32-37 डिग्री सेल्सियस माना गया है। इसलिए मोटे अनाज की फसलों को जुलाई के महीने में हर हालत में बो देना चाहिए। दक्षिण भारत में इसकी खेती पूरे वर्ष की जा सकती है।

बुवाई का समय

मोटे अनाजों की पैदावार में बुवाई के समय का बहुत महत्व है। यदि उपयुक्त समय पर बुवाई की जाए तो न केवल अधिक पैदावार मिलती है, बल्कि बीमारियों की संभावना भी कम हो जाती है। उत्तर-पश्चिम भारत और इसके आसपास के इलाकों में मोटे अनाजों को जुलाई के पहले पखवाड़े से इसी महीने के अंतिम सप्ताह तक बो देना चाहिए। बारानी क्षेत्रों में मानसून की पहली वर्षा के साथ ही मोटे अनाजों की बुवाई कर देनी चाहिए। 25 जुलाई के बाद बुवाई करने से प्रतिदिन प्रति हैक्टेयर 40-45 कि.ग्रा. कम पैदावार मिलती है। पैदावार में इस कमी का मुख्य कारण बीमारियों का प्रकोप होना, पौधों की अधिक मृत्यु दर और फसल पकते समय कम तापमान का होना है। वर्षा आधारित क्षेत्रों में चारे वाली फसलों जैसे ज्वार, बाजरा के साथ ग्वार की मिलवां बुवाई वर्षा शुरू होने के तुरन्त बाद जून के आखिरी सप्ताह से लेकर जुलाई के प्रथम सप्ताह तक अवश्य कर देनी चाहिए।

मोटे अनाजों की नवीनतम व जैव फोर्टिफाइड किस्में

हाल ही में मोटे अनाजों की अनेक जैव फोर्टिफाइड किस्मों का विकास किया गया है। वर्ष 2018 से फरवरी 2020 तक मिलेट्स की 8 जैव फोर्टिफाइड किस्मों/संकरों को खेती के लिए जारी किया गया है। ये किस्में परंपरागत किस्मों की अपेक्षा 1.5 से 3.0 गुना ज्यादा पोषक तत्वों से भरपूर हैं। इस प्रक्रिया में जैव प्रौद्योगिकी व सस्य तकनीकों के द्वारा पौधे के खाद्य भाग में पोषक तत्वों की मात्रा बढायी जाती है। जिससे इनकी आपूर्ति जनसंख्या के बडे हिस्से तक संभव हो पाती है। यह लोगों में स्वास्थ्य सुधार का सुरक्षित एवं जोखिम-मुक्त तरीका है। यह अपेक्षाकृत कम समय में तेजी से स्वास्थ्य सुधार में सक्षम है एवं लागत प्रभावी भी है। इससे न केवल कुपोषण मुक्त भारत बनाने में मदद मिलेगी, बल्कि इससे किसानों की आय बढने के साथ-साथ कृषि व्यवसाय के नये आयाम भी खुलेगें।

मोटे अनाजों की प्रमुख व नवीनतम प्रजातियों में फोक्सटेल मिलेट (कांगनी) की एसआईए-3156, फिंगर मिलेट (मंडुवा या रागी) की जीपीयू-67, वीआर-847, वीएल मंडुवा 380 व वीएल मादिरा 208 प्रजातियां शामिल है। मोटे अनाजों में फिंगर मिलेट की सीएफएमवी 1 और 2 प्रजातियां कैल्सियम, आयरन और जिंक की पर्याप्त मात्रा रखती है। जबिक बाजरा की एचएचबी 299 व एएचबी 1200 प्रजातियां आयरन व जिंक की उच्च मात्रा से भरपूर है। इसी प्रकार कुटकी की सीएलएमवी-1 जिंक व आयरन से भरपूर है। उपरोक्त के अलावा बाजरे की संकर किस्मों में एचएचबी 272, एमपीएमएच 17, 21, एमएच 1890, 1760, 1610, 1684, जीएचबी 905, एचएचबी 224 आदि प्रमुख है। इसके अलावा संकुल किस्मों में पूसा 443, पूसा कम्पोजिट 701, 334, राज 171, पूसा सफेद व जेबीबी 3 शामिल है। ज्वार की उन्नत किस्मों में दाने के लिए सीएसवी 10, 13, 15, 17, 20, 27 व पीएसवी 2561 प्रमुख है। ज्वार की संकर प्रजातियों में सीएसएच 9, 10, 11, 14, 18, 25, एसपीएच 388, 468 मुख्य है। खरीफ में ज्वार से अधिक चारा लेने के लिए एक कटाई वाली उन्नत किस्में पूसा चरी-1, 6, 9, 23, हरियाणा चरी-136, 171, 260, एसएल 44, पंत चरी 4, यूपी चरी 1, 2 और राज. चरी-1 व 2 का प्रयोग करें। ज्वार

की बहु कटाई वाली किस्मों में पूसा चरी 23 और पूसा संकर 103, 109, सफेद मोती, हरियाणा ज्वार 513, जवाहर ज्वार 513 मुख्य है।

बुवाई की विधि

मोटे अनाजों की बुवाई करते समय इस बात का

उपचार 100 ग्राम पीएसबी, 100 ग्राम एजोटोबैक्टर व 50 ग्राम ट्राईकोडर्मा के मिश्रण से उपचारित करना चाहिए। इससे वायुमंडलीय नाइट्रोजन एकत्रीकरण की प्रक्रिया पर अच्छा प्रभाव पड़ता है। बीज उपचार बुवाई के 10-12 घंटे पहले कर लेना चाहिए। एक हैक्टेयर क्षेत्र में बुवाई करने हेतु एजोटोबैक्टर जीवाणु के दो पैकेट पर्याप्त होते है। किसान भाई

सारणी: प्रमुख मोटे अनाजों की जैव फोर्टिफाइड किस्मों का संक्षिप्त विवरण

क्रमांक	फसल का	प्रजातियां	टिप्पणी				
	नाम						
1-	रागी	सीएफएमवी-1	कैल्सियम-428 मि.ग्रा/100 ग्राम, आयरन-58.0 पीपीएम, जिंक-44 पीपीएम, उपज-31.1				
			क्वि./हे				
		सीएफएमवी-2	कैल्सियम-654 मि.ग्रा/100 ग्राम, आयरन-39.0 पीपीएम, जिंक-25 पीपीएम, उपज-29.5				
			िक्व./हे				
2-	कुटकी	सीएलएमवी-1	आयरन-59.0 पीपीएम, जिंक-35 पीपीएम, प्रोटीन-14.4 प्रतिशत, उपज-15.8 क्वि./हे				
3-	ज्वार	आईसीएसआर	परंपरागत प्रजातियों की अपेक्षा जिंक व आयरन से भरपूर				
		14001					
4-	बाजरा	एचएचबी 299	संकर उत्तर-पश्चिम क्षेत्रों के लिए, आयरन व जिंक की उच्च मात्रा, उपज 32.7 क्वि./हे				
		एएचबी 1200	संकर , उत्तर-पश्चिम क्षेत्रों के लिए, आयरन व जिंक की उच्च मात्रा,उपज 32 क्वि./हे				
		एएचबी1269 एफई	संकर , उत्तर-पश्चिम व दक्षिण भारत के लिए, आयरन व जिंक की उच्च मात्रा, उपज 31.7				
			क्वि./हे				
		एचएचबी 331	उत्तर-पश्चिम भारत, आयरन 83 पीपीएम, उपज 31.7 क्वि./हे				
		आरएचबी 234	उत्तर-पश्चिम भारत, जिंक 41 पीपीएम, आयरन 84 पीपीएम, उपज 31.7 क्वि./हे				

विशेष ध्यान रखें कि खेत में पर्याप्त नमी हो। किसान भाइयों को सलाह दी जाती है कि संकर किस्मों की बुवाई करते समय हर बार नया बीज प्रयोग करें। पंक्ति में बुवाई देसी हल के पीछे कूंडों में या सीडड्रिल द्वारा की जा सकती है। सीडड्रिल द्वारा बुवाई करना सर्वोतम रहता है। क्योंकि इससे बीज समान दूरी पर और समान गहराई पर पड़ता है। यदि मोटे अनाजों की खेती बड़े पैमाने पर की जा रही हो, तो सिडड्रिल का प्रयोग करना आर्थिक दृष्टि से भी उपयोगी रहता है।

बीज उपचार

बीज बोने से पहले उसे फंफूदीनाशक दवा से अवश्य उपचारित करें। इसके लिए बुवाई से पूर्व बीज को 2.5 ग्राम फंफूदीनाशक दवा थीरम प्रति कि.ग्रा. बीज की दर से उपचारित करके बुवाई करें या बुवाई से पूर्व बीज का

यह भी ध्यान रखे कि यदि बीज किसी विश्वसनीय संस्था से खरीदा गया है तो उसे फफूंदीनाशक या कीटनाशक से उपचारित करने की आवश्यकता नहीं है। यह बीज पहले से ही उपचारित होता है।

खाद एवं उर्वरकों की संतुलित मात्रा

नाइट्रोजन, फास्फोरस एवं पोटाश पोषक तत्वों का फसल उत्पादन पर सीधा प्रभाव पड़ता है। साथ ही फसल को इनकी अधिक मात्रा में आवश्यकता होती है। अतः इन तत्वों की संतुलित एवं अनुमोदित मात्रा न दें, तो उत्पादन में भारी गिरावट आ जाती है। इसी तरह सूक्ष्म पोषक तत्व बहुत कम मात्रा में पौधों द्वारा लिए जाते है। परन्तु विभिन्न पादप शारीरिक क्रियाओं में इनका महत्वपूर्ण योगदान है। सूक्ष्म पोषक तत्वों की कमी व अधिकता दोनों ही हानिकारक है।

यदि मृदा में सूक्ष्म पोषक तत्व पर्याप्त मात्रा में हैं, तो इनकी अतिरिक्त मात्रा देने से फसल को कोई विशेष लाभ नहीं होता है। मोटे अनाजों की भरपूर पैदावार के लिए के लिए उर्वरकों की कुल आवश्यकता सारणी 4 के अनुसार प्रयोग करें।

मोटे अनाजों के साथ अन्त:फसल

मोटे अनाजों की खेती दूसरी फसलों के साथ मिश्रित रूप से भी की जा सकती है। ज्वार व बाजरे की फसल में यदि फली वाली फसलें उगाई जाएं तो इससे न केवल दालों का उत्पादन बढ़ता है, वरन् मनुष्यों के खाने में अतिरिक्त पोषक तत्वों की उपलब्धता भी बढ़ जाती है। इसके साथ-साथ फली वाली फसलें वायुमंडलीय नाइट्रोजन एकत्रीकरण की प्रक्रिया करके ज्वार व बाजरे की फसल को नाइट्रोजन भी उपब्लध कराती है। इसलिए ज्वार व बाजरे की फसल में अन्य कोई फसल भी अन्तःफसल के रूप में लगाना लाभप्रद रहता है। ज्वार व बाजरे के साथ ग्वार और लोबिया की मिलवॉ खेती उत्पादक एवं लाभदायी हो सकती है। अतः मोटे अनाजों के साथ ग्वार व लोबिया की मिलवॉ फसल से उर्वरक लागत को कम करते हुए किसान भाई अधिक उत्पादन ले सकते है।

जल प्रबंधन

मोटे अनाजों की जलमांग (300-400 मि.मी), गेंह् की (600-800 मि.मी) की तुलना में बहुत कम है। यही कारण है कि बारानी क्षेत्रों के अन्तर्गत मोटे अनाजों का लगभग 86 प्रतिशत आता है। खरीफ में उगाये जाने वाले मोटे अनाजों जैसे रागी, कोदों, बाजरा व ज्वार में बाली निकलते समय नमी अत्यंत आवश्यक है। वर्षा नहीं होने पर सिंचाई अवश्य करें। यद्यपि मोटे अनाज बारानी क्षेत्र की फसलें है, लेकिन सिंचित इलाकों में फूल आने की स्थिति में इस फसलों की सिंचाई करना लाभदायक होता है। जिससे फसल की वृद्धि पर कम मृदा नमी का प्रतिकूल प्रभाव न पड़े। सिंचित क्षेत्रों में यदि वर्षा बिल्कुल ही न हो तो ज्वार व बाजरे की फसल में 2-3 सिंचाइयों की आवश्यकता होती है। बाजरा की फसल अधिक पानी को सहन नहीं कर पाती हैं। यदि वर्षा का आवश्यकता से अधिक पानी खेतों में खड़ा है, तो उसे तुरन्त निकालने का प्रबन्ध करना चाहिए। सूखे के प्रभाव को कम करने के लिए फसल पर दो बार केओलिन नामक

वाष्पोत्सर्जन अवरोधक के 6 प्रतिशत घोल का छिडकाव करें ताकि पत्तियों पर सूर्य की किरणों के प्रभाव को कम करके पत्तियों द्वारा पानी के वाष्पीकरण को कम कर सकते है।

खरपतवारों की रोकथाम

किसान भाई हमेशा ध्यान रखें कि फसल को खरपतवार प्रतिस्पर्धा के क्रान्तिक समय में खरपतवारों से मुक्त रखें । इसके लिए शुद्ध एवं साफ बीज का प्रयोग करके खरपतवारों पर प्रभावी नियंत्रण किया जा सकता है। एक ही फसल को बार-बार एक ही खेत में उगाने से उसमें खरपतवारों का प्रकोप बढ़ जाता है तथा कीट एवं बीमारियां भी अधिक लगती है। इसलिए आवश्यक है कि एक ही फसल को बार-बार एक ही खेत में न बोयें । बुवाई हमेशा पंक्तियों में करनी चाहिए। जिससे निराई-गुडाई यंत्र से कतारों के बीच उगे खरपतवारों को काफी हद तक समाप्त किया जा सके। दलहनी व तिलहनी फसलों को ज्वार व बाजरा के साथ अन्तःफसल के रूप में उगाने से न केवल पैदावार में वृद्धि होती है, बल्कि खरपतवारों का भी नियंत्रण हो जाता है। मोटे अनाजों की फसलों में समय समय पर निराई-गुड़ाई कर खरपतवारों को निकालते रहें।

कीटों की रोकथाम

हालांकि आमतौर पर मोटे अनाजों की फसलों में कीट-पतंगें नहीं लगते हैं। लेकिन फिर भी फसल की निगरानी करते रहना चाहिए। रोयें वाली इल्लियां, टिड्डों तथा भूरे घुनों के आक्रमण के समय फसल पर कार्बोफ्यूरान 3 प्रतिशत दाने 20 कि.ग्रा. प्रति हैक्टेयर की दर से प्रयोग करें। अधिक दीमकग्रस्त क्षेत्रों में फसल पकने के डेढ से दो महीने पहले क्लोरपाईरीफास 20 ई.सी. 5 मि.ली. प्रति लीटर या इमीड़ाक्लोप्रिड 200 एस.एल को 0.5 मि.ली प्रति लीटर का जड़ों के आस-पास छिड़काव करना चाहिए। इन दीमकग्रस्त पौधों को पशुओं के चारे के लिए उपयोग न करें। पंजाब व राजस्थान में बाजरे के पौधो को ओड़ोन्टोटर्मिस ओबेसस जाति की दीमक भारी नुकसान पहुँचाती है। भूमि में दीमक का प्रकोप है तो खेत में पहली सिंचाई के समय क्लोरपाईरीफास 20 ई.सी. 3-5 लीटर को 50 कि.ग्रा. सूखी मिट्टी में मिलाकर प्रति हैक्टेयर की दर से बिखरे दें।

कटाई, भंडारण एवं विपणन

ज्वार व बाजरा की कटाई सही समय पर कर लेना

चाहिए। ज्वार व बाजरा में जब पत्तियाँ पीली पड़कर सूख जायें तथा दाने सख्त हो जायें तो फसलें कटाई के लिए तैयार हो जाती है। दाने के लिए उगायी जाने वाली ज्वार व बाजरा की कटाई तभी करनी चाहिए।

जब दानों में 25-30 प्रतिशत नमी शेष रह जाय। बालियों के डंठल तोड़कर 3-4 दिन धूप में सुखाने के पश्चात मशीन से दाना अलग कर लेना चाहिए। जब दानों में नमी की मात्रा 14 प्रतिशत रह जाये तो मंड़ी में ले जाए। फूल आने से पूर्व या फूल आने के समय ज्वार व बाजरा का प्रयोग हरे चारे के रूप में भी किया जा सकता है। भण्डारण के लिए बीज को 8-10 प्रतिशत आर्दता के स्तर तक सूखाना चाहिए। बीज को अलग-अलग श्रेणी में छांट कर हवादार जूट के थैले में भर देना चाहिए एवं गुणवत्ता के आधार पर विपणन करना चाहिए।

भविष्य की मांग

खाद्यान्न एवं चारे की बढ़ती हुई मांग को देखते हुए मोटे अनाजों की उत्पादकता बढ़ाना अत्यंत आवश्यक हो गया है और यह तभी संभव है जब मोटे अनाजों की अधिक उपज देने वाली संकर एवं उन्नत किस्मों की खेती उन्नत सस्य विधियां अपनाकर की जाय। इसके अलावा कुपोषण की समस्या के समाधान हेत् मोटे अनाजों की जैव फोर्टीफाइड किस्मों का भी विकास किया जाना चाहिए। साथ ही भविष्य में मिलेट्स की खेती को प्रोत्साहित करने के साथ-साथ इनके भंडारण क्षमता में सुधार करने, प्रसंस्करण व मूल्य संवर्धन पर भी जोर देने की जरूरत है। इसके अलावा फसल विविधीकरण और टिकाऊ कृषि को बढावा देने हेतु मोटे अनाजों को वर्तमान फसल प्रणालियों का हिस्सा बनाने की जरूरत है। जिससे मोटे अनाज देश को खाद्य व पोषण सुरक्षा में आत्मनिर्भर और विकसित भारत बनाने के साथ-साथ किसानो की आय व खुशहाली बढाने में महत्वपूर्ण भूमिका निभा सके।

मक्के की विभिन्न क़िस्मों में प्रकाश संश्लेषक संबंधी लक्षण और उपज पर सूखे के तनाव का प्रभाव

नीता द्विवेदी, पी. एस. ब्रह्मानंद, अनिल कुमार मिश्र, रोसिन के. जी, बिपिन कुमार और सर्वेंद्र कुमार

मिट्टी में कम पानी की उपलब्धता की स्थिति में, पतियों में पानी की मात्रा में कमी होती है। जल संकट की ओर अग्रसर इस समस्या की त्वरित प्रतिक्रिया, रंध्रों का बंद होना है, जो पत्तियों में गैसों के संचालन को सीमित करता है और परिणामस्वरूप प्रकाश संश्लेषण को सीमित करता है। मक्का की उपज उन्नत हेतु जल तनाव के प्रभाव को आनुवांशिक माध्यम से कम किया जा सकता है। मक्का अर्ध-शुष्क क्षेत्रों में उगाई जाने वाली एक महत्वपूर्ण खाद्य फसल है जिसमें सूखा सहनशीलता प्राप्त करने की दिशा में वृद्धि दर्ज की है। मक्के की संवेदनशीलता के बावजूद सूखे के प्रति सहिष्ण् जीनोटाइप की खोज में आशा जनक परिणाम मिले हैं। मक्के में यह और शारीरिक प्रतिक्रियाओं की समझ सहिष्णु जीनोटाइप के आधार पर की जा सकती है। यह जानना अभी शेष है कि जल की कमी के प्रति सहिष्णुता किसके द्वारा पाई गई है? जल आवश्यकताओं के मूल्यांकन में तनाव के प्रति आनुवंशिक तन्यता,आवश्यक जल के अतिरिक्त उपयोग, शारीरिक विशेषताओं का उपयोग इत्यादि के चयन में जीन तकनीकी अनुप्रयोग किया जा सकता है, क्योंकि वे आनुवंशिक परिवर्तनशीलता बढ़ा सकते हैं। इस वातावरण में बेहतर जीनोटाइप की पहचान में सटीकता लायी जा सकती है। सूखे की सहनशीलता के प्रति शारीरिक प्रतिक्रियाएँ गंभीरता के अनुसार भिन्न हो सकती हैं जैसे; तनाव लगाने की अवधि, फेनोलॉजिकल चरण और आनुवंशिक सामग्री के अनुसार फ़ीनोलॉजिकल चरण के संबंध में, मक्का विशेष रूप से उगने के चरण में बहुत संवेदनशील होता है, इस अवधि के दौरान सूखे से वृद्धि होती है। एंथेसिस-सिल्किंग अंतराल (एएसआई), जो उपज में नकारात्मक रूप से सहसंबद्ध है। सूखे की स्थिति में मक्के में जड़ और पत्ती दोनों में रूपात्मक-शारीरिक संशोधनों की पहचान भी की गई है जिस ने जीनोटाइप चयन और सहिष्णुता की समझ में बहुत योगदान दिया तंत्र। पानी की कमी पौधों की वृद्धि और विकास से

संबंधित कई रूपात्मक विशेषताओं और शारीरिक प्रक्रियाओं को प्रभावित करती है। सामग्री (आरडब्ल्यूसी), पत्ती की जल क्षमता में कमी (Ψ_w) और स्फीति हानि, रंध्र का बंद होना, और कोशिका वृद्धि और पौधे की वृद्धि में कमी रूपात्मक और सूखे के तनाव की प्रतिक्रिया में शारीरिक परिवर्तनों का उपयोग प्रतिरोधी की पहचान करने में मदद के लिए किया जा सकता है।

सूखे के तनाव के तहत बेहतर उत्पादकता के लिए जीनोटाइप या फसलों की नई किस्मों का उत्पादन करना आवश्यक है। सूखे के तनाव के प्रति पौधों की प्रतिक्रियाएँ तनाव की तीव्रता और अवधि पर निर्भर करती हैं; साथ ही पौधे की प्रजातियाँ और उसके विकास का चरण भी बहुत उपयोगी हैं। सूखे की तनाव की स्थिति में, पौधे पानी की और अधिक हानि से बचने के लिए अपने रंध्रों को बंद कर देते हैं। सूखे के तनाव के तहत प्रकाश संश्लेषण का अवरोध सूखे के लिए बहुत महत्वपूर्ण है जिसके कारण जल का हास कम होता है और सूखा सहिष्णुता बढ़ जाती है। मक्का की फसल में प्रकाश संश्लेषक वर्णक प्रकाश संचयन में महत्वपूर्ण भूमिका निभाते हैं। कार्बन डाइऑक्साइड (CO2)अवशोषण दर पर सूखे के तनाव का प्रभाव (ए), वाष्पोत्सर्जन दर (ई) और जल उपयोग दक्षता (डब्ल्यू.यू.ई.) की कई जांच की गई है। मक्का की फसल में बताया कि सरसों (ब्रैसिका नेपस एल.) और मूंग जीनोटाइप्स जैसी फसलें सूखे के तनाव के प्रति पौधों की एक अन्य प्रतिक्रिया प्रकाश संश्लेषक वर्णक में परिवर्तन है। कैरोटीनॉयड मौलिक भूमिकाएँ निभाएँ और पौधों को सूखे के तनाव का प्रतिरोध करने में मदद करें। सूखा तनाव क्लोरोफिल ए/बी संश्लेषण को रोकता है और क्लोरोफिल ए/बी बाइंडिंग प्रोटीन की सामग्री को कम करता है, जिससे फोटोसिस्टम से जुड़े द्वितीय प्रकाश-संचयन वर्णक प्रोटीन में कमी हो जाती है । सूखे के तनाव का क्लोरोफिल और कैरोटीनॉयड सामग्री पर नकारात्मक प्रभाव पड़ता है। कई अध्ययनों में आरडब्ल्यूसी

और पत्ती जल क्षमता की भी जांच की गई है। पत्ती जल क्षमता और आर.डब्ल्यू.सी. पौधे के तनाव प्रतिक्रिया व सूखे की मात्रा निर्धारित करने के लिए विश्वसनीय पैरामीटर हैं। हमने रूपात्मकता में उस परिवर्तन की परिकल्पना की जिसमें शारीरिक और प्रकाश संश्लेषण संबंधी विशेषताएँ जीवित रहने और उच्चतर का पक्ष लेती हैं।

इस संदर्भ में, इस अध्ययन में हमने सूखे की स्थिति के प्रति सहनशील मक्का जीनोटाइप की अनाज उपज खेत की अंदर स्थिति में संबंधित कुछ मापदंडों की प्रारंभिक प्रतिक्रियाओं जैसे प्रकाश संश्लेषण और प्रकाश संश्लेषक क्षति में विभिन्न कारकों की भागीदारी के साथ सूखे के तनाव के प्रति सहनशीलता की सीमा में भिन्न मक्के की पांच क़िस्मों की स्थिति को को मापा। हमने इसका आंकलन किया कि पौधों की ऊंचाई, पत्ती की जल क्षमता, सापेक्ष जल सामग्री पर सूखे के तनाव का सापेक्ष प्रभाव और तेजी से और आसानी से खोजने के लिए संवेदनशील और प्रतिरोधी मक्का जीनोटाइप में 1000 अनाज का वजन सूखा सहनशीलता के लिए मक्का जीनोटाइप की स्क्रीनिंग की तकनीक का प्रयोग किस प्रकार प्रोलीन से किया जा सकता है। जल प्रौद्योगिकी केंद्र, भारतीय कृषि अनुसंधान केंद्र, नई दिल्ली, भारत में मक्का की फसल में सूखे के तनाव का प्रभाव फूल आने की अवस्था में एंजाइम सुक्रोज सिंथेज़ की गतिविधि का भी मूल्यांकन किया गया। सूखे के तनाव के तहत ऑस्मो-रक्षक के रूप में प्रोलीन की भूमिका को साहित्य में अच्छी तरह से प्रलेखित किया गया है। मक्के की पांच किस्मों की पत्तियों में जमा प्रोलाइन की मात्रा नियंत्रण और सूखे की तनाव की स्थिति में मापी गई है।

संयंत्र सामग्री

मक्के की पांच किस्मों के बीज सूखे के तनाव को सहन करने की अपनी सीमा में भिन्न हैं। अर्थात् HQPM-1, HQPM-5, PMH-1, PMH-3 और प्रकाश 3 x 3 मीटर के प्लॉट आकार में जल पर सूखा तनाव (25% क्षेत्र क्षमता) और नियंत्रण स्थितियाँ (100% क्षेत्र क्षमता)। प्रत्येक पंक्ति में 25 सेमी की दूरी पर पांच-पाँच बीजों का रोपण किया गया, पंक्ति से पंक्ति की दूरी 25 सेमी थी। रूपात्मक और मक्के की पाँच किस्मों में रीरिक सुचकांकों को मापा गया।

परिणाम:

मक्का की फसल में अनाज की उपज और उसके घटक

अनाज उत्पादन और संबंधित लक्षणों के लिए मक्के की पांच किस्मों में महत्वपूर्ण अंतर देखा गया। HQPM-5 ने नियंत्रण स्थितियों में उच्चतम GY, BM और TGW दिखाया, इसके बाद PMH- 1का स्थान रहा।पीएमएच-3, एचक्यूपीएम-1 और प्रकाश फसल ने अनाज उत्पादन के तहत उच्च स्थिरता दिखाई। सिंचित नियंत्रण की तुलना में फसल सूचकांक में सुधार के लिए तनाव की स्थित।

रूपात्मक-शारीरिक विशेषताएं

पांचों किस्में रूपात्मक-शारीरिक लक्षणों में काफी भिन्न थीं। तनाव उपचार से पौधे की ऊंचाई, स्पेड मान और पत्ती की जल क्षमता में काफी कमी आई। फसल किस्में HQPM-5 और PMH-1 ने तनाव की स्थिति में अन्य किस्मों की तुलना में बेहतर जल संबंध बनाए रखा। तनाव की स्थिति में सुक्रोज सिंथेज गतिविधि के आधार पर एचक्यूपीएम-5, पीएमएच-1 और एचक्यूपीएम-1 किस्मों ने उच्च गुणवत्तापूर्ण प्रदर्शन किया। पराकाश और पीएमएच-1 किस्मों को ऑस्मोलाइट प्रोलीन का उच्चतम संचय, उच्चतम क्लोरोफिल और कैरोटीनॉयड सामग्री युक्त दिखाया गया। तनाव की स्थिति में इन किस्मों के उच्च सुखा सहनशीलता स्तर का संकेत मिलता है। शेष किस्मों की तुलना में प्रकाश संश्लेषण प्रभाव और संबंधित लक्षण प्रकाश संश्लेषण (पीएन) शुद्ध प्रकाश संश्लेषण (पीएन) में महत्वपूर्ण विविधता अंतर एंथेसिस चरण में पाया गया। नियंत्रण परिस्थितियों में अन्य किस्मों की तुलना में एंथेसिस चरण में एचक्यूपीएम-5 और पीएमएच-3 किस्मों में उच्च पीएन दर देखी गई। यह दृष्टिगत हुआ कि पानी की भारी कमी से पीएन कम हो गया। Pn में तनाव प्रेरित कमी HQPM-5 में सबसे अधिक थी जबिक कल्टीवेर एचक्यूपीएम-1 ने तनाव की स्थिति में पीएन दर बनाए रखी। रंध्र चालन (जीएस) स्टोमेटल चालन (जीएस) में कल्टीवेर अंतर महत्वपूर्ण था। एंथेसिस चरण में उच्चतम जी.एस.प्रकाश के पास था उसके बाद पी एम एच-3, जबिक पी एम एच-1 में सबसे कम जीएस दिखा।

किस्मों के बीच पानी की कमी से सभी किस्मों में जी.एस. में उल्लेखनीय कमी आई। जी.एस. में कमी की दर एच क्यू पीएम-5 में सबसे अधिक थी जबिक कल्टीवेर पी एम एच-3 में सबसे कम थी। जी.एस में कमी यह इंगित करता है कि सूखे की तनाव की स्थित में पी एन में कमी आई थी इस अवस्था में रंध्र बंद होने के बजाय अधिकतर गैर-रंध्रीय कारकों द्वारा नियंत्रित होता है।

वाष्पोत्सर्जन दर

विभिन्न किस्मों में पी एम एच-3 में सबसे अधिक अंतरकोशिकीय वाष्पोत्सर्जन दर देखी गई। इसके बाद प्रकाश है। कल्टीवेर PMH-1 ने सबसे कम वाष्पोत्सर्जन दर दिखाई।पानी की कमी से सभी पाँच किस्मों में वाष्पोत्सर्जन दर में उल्लेखनीय वृद्धि हुई। तनावग्रस्त पौधों की वाष्पोत्सर्जन दर नियंत्रण सिंचित पौधों की तुलना में लगभग 11% अधिक थी। इस अध्ययन में जी एस और वाष्पोत्सर्जन दर की प्रतिक्रियाएँ स्पष्ट करती हैं कि सूखातनाव प्रकाश संश्लेषण दर को काफी कम कर देता है। जी एस, वाष्पोत्सर्जन दर की तुलना में सूखे के तनाव के प्रति अधिक संवेदनशील पाया गया। पी एन और जी एस के बीच कमजोर संबंध इंगित करता है, कि सूखे के तनाव के तहत पी एन में कमी तथा रंध्र का अकेले बंद होने को जिम्मेदार नहीं ठहराया जा सकता है।

वानस्पतिक अवस्था में सूखा सख्त होना

वनस्पित तनाव वाले पौधों के एंथेसिस में पीएन में वृद्धि एंजाइम स्तर में रासायनिक परिवर्तन के कारण अच्छी तरह से पानी की स्थिति उत्पन्न हो सकती है। हालाँकि, यह वनस्पित का ट्रिगिरंग प्रभाव है सूखे के लिए आगे की जांच की आवश्यकता है।

गुण सहसंबंध

सूखे के तहत जीवाई का बायोमास, कुल अनाज वजन और फसल सूचकांक के साथ सकारात्मक और महत्वपूर्ण संबंध था। पीएन अनाज उत्पादन और इसके घटक लक्षणों के साथ सकारात्मक और महत्वपूर्ण रूप से सहसंबद्ध था। सूखा तनाव पीएन और जीएस के बीच कमजोर संबंध उस कमी को दर्शाता है। पीएन में सूखे के तहत तनाव की स्थिति स्टोमेट बंद होने के बजाय ज्यादातर गैर-स्टोमेटल कारकों द्वारा नियंत्रित की गई।

विचार-विमर्श

अंकुरण के दौरान पौधों की लंबाई कम होने से सूखा मक्के के उत्पादन को प्रभावित कर सकता है। फूल आने से पहले चरण, पत्ती क्षेत्र के विकास और प्रकाश संश्लेषण दर को कम करके अवधि, फूल आने के दौरान बालियां और गुठली का जमाव कम होने से और प्रकाश संश्लेषण कम होने से और दाना भरने के दौरान पत्तियों की शीघ्र बुढ़ापा उत्पन्न करना इयादी के द्वारा फसल उत्पादन में अतिरिक्त कमी, सूखे के अनुकूल ऊर्जा और पोषक तत्वों की बढ़ी हुई खपत से आ सकता है। हमें ऐसा प्रतीत होता है कि मक्के में सूखा सिहण्णुता की वृद्धि में कुछ महत्वपूर्ण शारीरिक प्रक्रियाएँ शामिल हैं उदाहरणार्थ;प्रतिक्रियाएँ, जैसे सूखे के तहत जड़ों की वृद्धि जिनमें; दाना भरने के दौरान निरंतर पत्ती प्रकाश संश्लेषण, जो शुष्क पदार्थ संचय में और वृद्धि में योगदान देता है।

अध्ययन किए गए मक्के की पांच किस्मों के लक्षण और प्रकाश संश्लेषण संबंधी लक्षण

यहाँ जैसा कि पहले बताया गया था;सूखे के तनाव की उपज, इसके घटक मॉर्फोफिजियोलॉजिकल को काफी कम कर दिया। । वर्तमान अध्ययन में, परकाश की खेती की गई है इसमें सुधार के कारण सिंचित नियंत्रण की तुलना में तनाव की स्थिति में फसल सूचकांक तथा अनाज की उपज में उच्चतम स्थिरता देखी गई। पी एम एच-1तनाव की स्थिति में अनाज की उपज में सबसे अधिक कमी देखी गई। पानी के तनाव के तहत, संकरों के बीच उच्च स्तर की भिन्नता देखी गई। तनाव और गैर-तनाव स्थितियों में अनाज की उपज और कृषि संबंधी विशेषताओं में सुधार, तनाव की स्थिति में मूल्यांकन किए गए मक्के में आनुवंशिक परिवर्तनशीलता के अस्तित्व की जांचकर्ताओं द्वारा सूचना मिली, जिस से फसल सुधार और इष्टतम वातावरण के लिए सही प्रजाति (वैराईटी) के चयन की संभावना का संकेत मिलता है। पर्याप्त पौध स्फीति और आत्मसात की कमी के कारण सूखे का तनाव रहता है परंतु भुट्टे एवं दानों का विकास उत्तरोत्तर होता है। इन चरणों में मिट्टी में पानी की कमी के कारण भी देरी हो सकती है। वर्तमान अध्ययन में, अनाज के विकास चरण के दौरान 30 दिनों के पानी के तनाव से काफी हद तक कमी आई है। सूखे के समय

लंबे समय तक मिट्टी की प्रतिरोधक क्षमता बढ़ने के कारण प्रति पौधे दानों की संख्या और अनाज का वजन कम हो सकता है। सूखा मुख्य रूप से अनाज विकास का चरण की अवधि कम करके उपज को कम करता है। विकास के दौरान पानी की कमी से भुट्टे और बीज का वजन कम हो जाता है बीज विकास के दौरान नमी के तनाव से छिलका प्रतिशत कम हो जाता है यह देखा गया कि मुख्य रूप से अंतिम फसल के दौरान जैविक उपज बढ़ जाती है

मक्के में अनाज की उपज

जैविक उपज की वृद्धि ने अनाज की उपज में सुधार के लिए इष्टतम और आवश्यक परिस्थितियाँ प्रदान किया। जैविक सहसंबंध के बीच सकारात्मक सूखे के तनाव के तहत उपज और अनाज की उपज उपरोक्त परिणाम का महत्वपूर्ण अनुमोदन है। नासरी व अन्य, ने बताया कि अनाज की उपज और जैविक उपज के बीच एक सकारात्मक महत्वपूर्ण सहसंबंध था। जैविक उपज (बायोमास) का अनाज की उपज के साथ उच्चतम सहसंबंध गुणांक था। सूखे के तहत अनाज की उपज का पौधे की ऊंचाई और पत्ती से भी गहरा संबंध था।

सूखे के तहत क्लोरोफिल सामग्री

यह परिणाम पिछले अध्ययनों के अनुरूप है। विकिरण ग्रहण करने की क्षमता और एक पत्ते की क्षमता तनाव के दौरान हरे रहने का अग्रत्यक्ष रूप से क्लोरोफिल सामग्री को मापकर मूल्यांकन किया जा सकता है। यहां मक्के की किस्मों का अध्ययन किया गया है, जैसा कि सूखे के तहत कम SPAD मूल्यों से पता चला है पाँचों किस्मों में नियंत्रण सिंचन की तुलना में सूखे के तनाव ने क्लोरोफिल की मात्रा को काफी कम कर दिया। तनाव के तहत फसल प्रकाश संश्लेषण के अनुकूलन की आवश्यकता है। महत्वपूर्ण विकास चरणों में आत्मसात को अधिकतम करने और इससे बचने के बीच संतुलन अतिरिक्त विकिरण के विनाशकारी प्रभाव. जैसे कि क्लोरोफिल सामग्री का संबंध और ऊर्जा के उत्पादन और परिवहन में वृद्धि के कारण मक्के में अनाज की पैदावार) सकारात्मक हो सकती है प्रकाश संश्लेषण से या क्लोरोफिल से ऊर्जा के पुनर्संयोजन के कारण नकारात्मक रंध्र संचालन में

कमी के कारण नमी के तनाव से प्रकाश संश्लेषण कम हो जाता है और पत्ती क्षेत्र में कमी आती है। जैसे-जैसे नमी का तनाव बढ़ता है, रंध्र बंद होने लगते हैं जो कि पौधों का वाष्पोत्सर्जन को कम करने का तंत्र कहा जाता है इसके परिणामस्वरूप कार्बन डाइऑक्साइड का प्रवेश भी होता है। वर्तमान अध्ययन में, प्रकाश संश्लेषण दर सकारात्मक और महत्वपूर्ण थी। सूखे के तनाव के तहत अनाज की उपज और उसके घटक लक्षणों के साथ सहसंबद्ध पर इसके विपरीत, के बीच कोई महत्वपूर्ण संबंध नहीं पाया गया। प्रकाश संश्लेषण दर और सूखे के तहत मक्का अनाज की उपज के आधार पर लेखकों ने यह निष्कर्ष निकाला कि अनाज की पैदावार केवल उच्च प्रकाश संश्लेषण दर के रखरखाव पर निर्भर नहीं करती है। बल्कि सिंक की उपलब्धता पर, सूखे की स्थिति, प्रकाश संश्लेषण का स्थानांतरण, नर और मादा पुष्पन का तुल्यकालन, पत्ती क्षेत्र सूचकांक और अवधि, पत्ती चालन रंध्र के खुले होने की डिग्री से निर्धारित होता है, और यह पैरामीटर पानी की स्थिति और पौधे की वाष्पीकरणीय मांग पर निर्भर करता है। जैसे ही रंध्र CO2 के प्रवाह को प्रभावित करते हैं, CO2 की कमी रंध्रों के बंद होने की ओर जाता है। परिणामस्वरूप कुल प्रकाश संश्लेषक क्षमता का उपयोग नहीं किया जाता है, जिसके परिणामस्वरूप प्रकाश संश्लेषक एन उपयोग दक्षता कम हो गई। फलस्वरूप दूसरी ओर यदि प्रकाश संश्लेषण किया जाता है अथवा होता है तब रंध्र चालन की उपयोगिता कम होना उत्पादन की हानि और निर्जलीकरण को रोकने की आवश्यकता के बीच का व्यापार पर निर्भर करती है। इस प्रकार, पानी जिनमें वाष्पोत्सर्जन और रंध्र के बीच इष्टतम संतुलन होता है आचरण, जीनोटाइप को बचाना, रुचि के हैं। इस अध्ययन में सबसे अधिक सूखा सहने वाली किस्म पराकाश है जिसमें अन्य क़िस्मों की तुलना में सूखे के तनाव के तहत रंध्र चालन में सबसे अधिक कमी देखी गई। कल्टीवेर पराकाश में अन्य किस्मों की तुलना में पानी की उपयोग दक्षता क्षमता में कम कमी देखी गई। पराकाश की किस्मों में सबसे अधिक संचय देखा गया। तनाव की स्थिति में ऑस्मोलाइट प्रोलीन, उच्चतम क्लोरोफिल और कैरोटीनॉयड सामग्री शेष की तुलना में परकाश किस्म के उच्च सुखा सहनशीलता स्तर का संकेत मिलता है। यहां

बताए गए परिणामों से संकेत मिलता है कि मक्के की खेती पराकाश ने सबसे अधिक प्रदर्शन किया। इसके बेहतर फसल सूचकांक, स्थिरता के कारण तनाव की स्थिति में अनाज की उपज में स्थिरता 1000-बीज के वजन में, उच्च प्रकाश संश्लेषण दर, क्लोरोफिल सामग्री, कैरोटीनॉयड और की तुलना में सूखे के तनाव के तहत प्रोलाइन सामग्री और कम रंध्र चालन इष्टतम रहा। फसल के कुल जीवन के संदर्भ में अपेक्षाकृत महत्वहीन हो सकता है। अंतिम उपज पूरे सीज़न में वृद्धि का एक अभिन्न अंग है, यह एक विशेषता है जो नमी के तनाव की अविध के दौरान पौधे के बढ़ने या जीवित रहने की क्षमता को प्रभावित करता है।

भारत के नहरी सिंचित क्षेत्रों में उन्न्त जल प्रबंधन : आधुनिकीकरण की आवश्यकता

अमित कुमार, अनिल कुमार मिश्र, डी. के. सिंह और तृप्तीमायी सुना

सामान्य रूप से विश्व और विशेष रूप से भारत की तेजी से बढ़ती आबादी के साथ भोजन, फाइबर और अन्य वस्तुओं की मांग कई गुना बढ़ गई है। खाद्य मांग को पूरा करने के लिए कृषि लागत में भी उल्लेखनीय वृद्धि हुई है। पानी, फसल उगाने के लिए सबसे महत्वपूर्ण और आवश्यक आगत (इनपुट), उत्पादन वृद्धि का एक सीमित कारक बनता जा रहा है। जल संसाधनों की कमी ने हाल के दशकों में एक बड़ी चुनौती पैदा की है और अगर ठीक से प्रबंधन नहीं किया गया तो आने वाले वर्षों में कृषि क्षेत्र जल के कमी से बुरी तरह से प्रभावित होगा। जल के महत्व को इस प्रकार समझा जा सकता है कि कृषि में सिंचाई के लिए दुनिया के लगभग 70% शुद्ध जल स्रोतों का उपयोग किया जा रहा है। भारत सहित कई देश अपने लाखों अरब भूखे लोगों का पेट भरने के लिए बड़े पैमाने पर सिंचित कृषि पर निर्भर हैं, जिनकी संख्या हर वर्ष कई गुना बढ़ रही है। इसलिए, शुद्ध जल के सीमित जल संसाधनों का प्रबंधन बहुत महत्वपूर्ण है। अत:, भविष्य के सतत कृषि विकास के लिए इसका विवेकपूर्ण संरक्षण, उपयोग और प्रबंधन करना समय की मांग है।

भारत की औसत वार्षिक वर्षा 119 सेमी है। बेसिनवार अनुमान के अनुसार भारत में सतही जल संसाधन की क्षमता लगभग 1869 बिलियन क्यूबिक मीटर (बीसीएम) है। इसमें से कुल उपयोग योग्य जल संसाधन 1123 बीसीएम, सतही जल 690 बीसीएम और भूजल 433 बीसीएम (सीडब्ल्यूसी, 2016-17) आंका गया है। भारत में वर्षा समान रूप से वितरित नहीं होती है जिसके कारण उत्तर पूर्वी भारत, घाट क्षेत्र आदि जैसे कुछ क्षेत्रों में अत्यधिक वर्षा होती है और अन्य क्षेत्र जैसे; मध्य पठार, थार रेगिस्तान, कच्छ का रन आदि सबसे गंभीर समस्याओं का सामना करते हैं।

कृषि अभियान्त्रिकी संभाग भा. कृ. अ. प. - भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल: aamit8896@gmail.com भारत में नहर सिंचाई का एक लंबा इतिहास है जो वैदिक कालीन हड़प्पा सभ्यता से जुड़ा है। मध्ययुगीन काल के दौरान भी भारत में सल्तनत और मुगल शासन के अंतर्गत कई नहरें चालू की गईं, जिसके बाद ब्रिटिश भारत के तहत नवीकरण और नई नहरों का निर्माण किया गया था। आजादी के बाद पिछले 70 वर्षों में, बढ़ती फसलों के लिए सिंचाई प्रदान करने के लिए पूरे भारत में कई बड़ी, मध्यम और छोटी सिंचाई योजनाएं शुरू की गई हैं। हालाँकि, बड़े पैमाने पर जलभरों की पंपिंग के बावजूद भारत में बड़े भू भाग अभी भी असिंचित हैं। फिर भी, नहर सिंचाई नेटवर्क या प्रणालियाँ जो स्वतंत्रता के बाद बड़ी संख्या में नहर प्रणालियाँ (मुख्य कार्य, नियामक, विभिन्न प्रकार के चैनल, वितरण प्रणालियाँ, द्वार, वाल्व और अन्य संरचनाएँ) बनाकर विकसित की गईं, उनमें उम्र बढ़ने के लक्षण दिखने शुरू हो गए हैं और मुरझाने के परिणामस्वरूप प्रदर्शन में काफी हद तक गिरावट आई।

सामान्य तौर पर भारत में लगभग सभी नहर कमांडों और विशेष रूप से पूर्वी सोन उच्च स्तरीय नहर (ईएसएचएल) में परियोजना की शुरुआत के दौरान बनाई गई पूरी क्षमता का क्षेत्र की स्थिति में कभी भी पूरी तरह से उपयोग नहीं किया गया था। यह मुख्य रूप से नहर के डिजाइन में किमयों, अवैज्ञानिक संचालन, खराब रखरखाव, और लाभार्थियों द्वारा अनुचित जल अनुप्रयोग (जलमार्ग और दायर क्षेत्र चैनलों के माध्यम से माइनर के आउटलेट के नीचे) के कारण है; नियंत्रण और जल मापने की संरचना का अभाव किसी खेत, फार्म, सिंचाई जिले, बेसिन या संपूर्ण जलसंभर को सिंचित करने के लिए सिंचाई प्रणालियों का प्रदर्शन सिंचाई दक्षता के संदर्भ में मापा जाता है। नहर कमांड क्षेत्र में, नहर नेटवर्क में विभिन्न स्तरों पर होने वाली भारी जल हानि के कारण स्रोत से निकाले गए कुल जल का कभी भी पूरी तरह से उपयोग नहीं किया जाता है। नहर सिंचाई में जलके मुख्य नुकसान में विभिन्न प्रकार के परिवहन चैनलों से रिसाव, खुली जलकी सतह से वाष्पीकरण हानि, विभिन्न परिवहन चैनलों की गीली मिट्टी

की सतह से वाष्पीकरण हानि, खेत पर आवेदन हानि (सतह अपवाह और गहरी अंतःस्राव) शामिल हैं।

इसके अलावा, सिंचाई की दक्षता मुख्य रूप से सिंचाई की विधि, मिट्टी के प्रकार, बनावट, जल धारण क्षमता, उगाई जाने वाली फसलों के प्रकार, अपनाई गई फसल प्रणाली, फसल चक्र और क्षेत्र की जलवायु जल मांग पर निर्भर करती है। इन सबके बीच उचित संवहन और अनुप्रयोग नहर प्रणालियों में उच्च परियोजना दक्षता प्राप्त करने में शीर्ष स्थान पर है। इसलिए, सिंचाई की दक्षता बढ़ाने और उपयोग की गई क्षमता और निर्मित क्षमता के बीच अंतर को कम करने के लिए उचित संचालन और प्रबंधन बहुत आवश्यक है।

आम तौर पर भारत में और विशेष रूप से बिहार राज्य में कई नहरों की सतही सिंचाई पद्धित में प्राप्त सिंचाई दक्षता बहुत कम है, मात्र 30 - 40%। इसलिए, सिंचाई प्रणालियों की दक्षता बढ़ाना अत्यधिक वांछनीय है तािक उपलब्ध जलसे अधिक क्षेत्र को सिंचित किया जा सके। इसे नहर अधिकारियों और किसानों के संयुक्त प्रयासों से सिंचाई प्रणाली के उचित रखरखाव और प्रबंधन द्वारा प्राप्त किया जा सकता है। राष्ट्रीय जल मिशन ने भारत में सिंचाई परियोजनाओं के लिए सिंचाई जल उपयोग दक्षता को 20% तक बढ़ाने और निर्मित और उपयोग की गई सिंचाई क्षमता के बीच अंतर को 15% तक कम करने का लक्ष्य रखा है। इसलिए, अधिक उत्पादक प्रणालियों के प्रदर्शन को बनाए रखते हुए, कम उत्पादकता वाली सिंचाई प्रणालियों के कृषि प्रदर्शन को बढ़ाना महत्वपूर्ण है।

सोन नहर परियोजना सोन नदी पर निर्मित एक नदी मोड़ योजना है। पुरानी सोन नहर परियोजना अक्षांश 24° 48' उत्तर और देशांतर 84° 07' पूर्व पर स्थित है। यह देश की सबसे पुरानी सिंचाई प्रणालियों में से एक है, जिसे 1873-74 में ब्रिटिश साम्राज्य के तहत रुपये की लागत से पूरा किया गया था। डेहरी ऑन सोन में एनीकट के साथ 26.8 मिलियन। सोन नहर कमान बिहार राज्य के आठ जिलों में फैली हुई है, अर्थात्; औरंगाबाद, पटना, जहानाबाद, गया, भोजपुर, बक्सर, रोहतास और भभुआ। समय बीतने के साथ, सिंचाई की माँग बढ़ गई है क्योंकि फसल चक्र में ख़रीफ़ फसलों ने

प्रमुख स्थान ले लिया है जो कमांड में उगाई जाने वाली प्रमुख फसलें बन गई हैं। सिंचाई की बढ़ती मांग को पूरा करने के लिए वर्ष 1968 में बिहार के रोहतास जिले के इंद्रप्री में एक बराज का निर्माण किया गया था। पुरानी सोन नहर प्रणाली को नए बैराज से जोड़ने के लिए बैराज के दोनों ओर दो लिंक नहरों का निर्माण किया गया था। हमेशा की तरह, इंद्रपरी बैराज में हेड के बाएं और दाएं किनारे पर दो नहर प्रणालियाँ काम करती हैं, अर्थात् पूर्वी और पश्चिमी सोन नहर प्रणालियाँ मुख्य रूप से रबी या सर्दियों की फसल के मौसम में उगाई जाने वाली फसलों की सिंचाई के लिए बनाई गई थीं। पूर्वी सोन नहर की एक शाखा को पूर्वी सोन उच्च स्तरीय (ईएसएचएल) नहर कहा जाता है जो बिहार राज्य के औरंगाबाद, जहानाबाद और गया जिलों में अत्यधिक उपजाऊ पथ में स्थित है। वर्तमान में दो उच्च स्तरीय नहरें मौजूद हैं, जिनमें से प्रत्येक पूर्वी और पश्चिमी लिंक नहरों से निकलती है, जिनका निर्माण बाद में 1974 में ऊंचे क्षेत्रों में सिंचाई प्रदान करने के लिए किया गया था। ईएसएचएल नहर की कुल लंबाई 81.68 किमी है जिसमें इसकी पूरी लंबाई तक जलपाया गया है। सोनबर्षा, भगवतीपुर, धरमपुर, रतनी और फरीदपुर ईएसएचएल नहर की पांच सहायक नहरों हैं। ईएसएचएल नहर कमांड में किसानों के सामने आने वाली विभिन्न क्षमताएं और समस्याएं यह हैं कि किसानों के बीच जलके वितरण में कोई समानता और पर्याप्तता नहीं है। अंतिम छोर के किसानों को अक्सर पर्याप्त जलनहीं मिल पाता है, खासकर सूखे की अवधि के दौरान या सूखे की अवधि के दौरान। इसलिए, इस क्षेत्र में फसलों को सिंचाई प्रदान करना एक प्रमुख चिंता का विषय है।

कमांड क्षेत्र में भौतिक सर्वेक्षण द्वारा नहर की भौतिक स्थितियों का भी आकलन किया गया। मुख्य नहर, वितरिकाएँ और छोटी नहरें पूरी तरह से अनियोजित थीं। विभिन्न नहर संरचनाएँ जैसे आउटलेट, बैंक, तटबंध, नहर तल, जल मार्ग और फ़ील्ड चैनल अच्छी परिचालन स्थितियों में बनाए नहीं रखे गए थे। नियमित अंतराल पर नहर का रख-रखाव व साफ-सफाई नहीं करायी गयी. नहर के बड़े भाग में गाद जमा होने तथा खरपतवार उगने की समस्या थी जिससे जल प्रवाह के मार्ग में बाधा उत्पन्न हो रही थी। नहर के कुछ

हिस्सों में किनारे का क्षरण देखा गया और नहर का क्रॉस-सेक्शन नियमित आकार में नहीं था। आउटलेटों के मुहाने पर गाद जमा होने और खरपतवार उगने के कारण कुछ आउटलेट ठीक से काम नहीं कर रहे थे। उच्च दक्षता और जल उत्पादकता प्राप्त करने के लिए नहर के सुधार और आधुनिकीकरण के लिए विभिन्न सुझाव दिए गए। नहर के किनारे कट गये थे और किनारों पर घास-फूस और छोटे-छोटे पौधे उग आये थे। इससे नहर की वास्तविक क्षमता कम हो सकती है। नहर के किनारे की दीवारों से रिसाव और निकासी बिंद् से रिसाव भी क्षेत्र में प्रमुख था। साइड ढलानों का ठीक से रखरखाव नहीं किया गया था। देखा गया कि अमरपुर माइनर में कई स्थानों पर किनारे टूट गये हैं। फसल के मौसम से पहले जलकी आपूर्ति शुरू करने से पहले मरम्मत और रखरखाव का काम नियमित अंतराल पर किया जाना चाहिए। चित्र में टूटी-फूटी जल वितरिकाओं की स्थिति को दर्शाया गया है। जिससे पता चलता है की नहरी क्षेत्रों में नहरों के संजाल का रख रखाव सम्यक नहीं होने से जल की एक बड़ी मात्रा का ह्रास होता है।

नहर के प्रदर्शन में सुधार के लिए अनुशंसा

- जल आवंटन की योजना कमांड क्षेत्र के पूर्व निर्धारित और डिज़ाइन किए गए फसल पैटर्न के आधार पर बनाई जानी चाहिए।
- खेतों तक पहुंचाए जाने वाले जलको मापा जाना चाहिए और सिंचाई के जलकी आवश्यकता निर्धारित करने के लिए प्रणाली स्थापित की जानी चाहिए और सिंचाई की मात्रा लागू की जानी चाहिए।
- संपूर्ण नहर प्रणाली में रिसाव से होने वाले नुकसान को रोकने के लिए मुख्य नहर, वितरिकाओं और छोटी नहरों की लाइनिंग का प्रावधान होना चाहिए। अस्तर प्रदान करने के बाद, इस प्रकार बचाए गए जलका उपयोग कमांड क्षेत्र के शेष हिस्से की सिंचाई के लिए किया जा सकता है।
- संरचनात्मक विकृतियों को नियमित अंतराल
 पर ठीक किया जाना चाहिए। नहर के किनारों

और ढलानों को अच्छी तरह से स्थापित किया जाना चाहिए ताकि किनारों के रिसाव से होने वाली जलकी हानि कम हो।

- छोटे स्तर पर नहर के वार्षिक रखरखाव का प्रावधान होना चाहिए। नहर की डिसिल्टिंग भी प्रतिवर्ष की जानी चाहिए ताकि नहर का अनुदैर्ध्य ढलान बना रहे और नहर अपनी पूरी क्षमता से चलती रहे।
- छोटी नहर में जल मीटिरंग तंत्र मौजूद होना चाहिए तािक फसल के विभिन्न चरणों में सिंचाई की मांग के अनुसार जलछोड़ा जा सके।
- नहर के लिए एक उचित सिंचाई जल वितरण कार्यक्रम/रोस्टर होना चाहिए। तािक किसान नहर के रिलीज शेड्यूल के अनुसार फसल की सिंचाई करें। वैकल्पिक रूप से, नहर अधिकारियों को लाभार्थियों के लिए एक वैज्ञानिक सलाहकार की तरह काम करना चाहिए और फसल की मांग के अनुसार रिलीज अलग-अलग होनी चाहिए।
- किसानों को सिंचाई जल प्रबंधन की अच्छी प्रथाओं पर प्रशिक्षण प्रदान किया जाना चाहिए और उनके खेतों में जलके नुकसान से बचने के लिए मिट्टी और जल प्रबंधन, सिंचाई प्रथाओं,

- कृषि संबंधी उपायों पर जागरूकता कार्यक्रम शुरू किए जाने चाहिए।
- नहरों को खरपतवार, पौधों और गाद जमाव से मुक्त रखने के लिए नियमित रखरखाव की आवश्यकता होती है। नुकसान को रोकने के लिए नहर के किनारों की उचित अंतराल पर जांच की जानी चाहिए।

फसलों की सिंचाई आवश्यकता के अनुसार कमांड क्षेत्र में जलके समान वितरण के लिए नहर के निकास पर समायोज्य आनुपातिक मॉड्यूल या एक स्वचालित चेक गेट की स्थापना की अत्यधिक अनुशंसा की जाती है। यद्यपि भारत में नहरी क्षेत्र किंचित कम ही है; परंतु यदि नहरी सिंचित क्षेत्रों में जल हानि में कमी की जा सके तो उपलब्ध जल से लगभग दो गुने क्षेत्रफल की सुनिश्चित सिंचाई जल की आपूर्ति आसानी से की जा सकती है। अनुसंशित विंदुओं पर नहर क्षेत्र प्रबन्धकों का ध्यानाकर्षण इस आलेख का वर्ण्य विषय है। हमारा अनुरोध है कि सभी लोग जो जल से संबन्धित हैं इस पर अपनी संस्तुतियों के साथ अपना योगदान करें तो हम देश के जल संसाधनों के सम्यक प्रबंधन में अपना महत्त्वपूर्ण योगदान कर सकते हैं।

नदियों को आपस में जोड़ने का भारतीय कृषि पर प्रभाव

तृप्तीमायी सुना, अनिल कुमार मिश्र, डी. के. सिंह, अमित कुमार और प्रदोष कुमार परमगुरु

जल, जो पृथ्वी ग्रह पर सबसे महत्वपूर्ण प्राकृतिक संसाधन है, के अवैज्ञानिक दोहन और जलवायु परिवर्तन के प्रभाव के कारण वर्तमान परिदृश्य में जल की उपलब्धता निस्संदेह भारी दबाव में है। संयुक्त राष्ट्र संघ और विश्व बैंक द्वारा यह दावा किया गया है कि भविष्य में यह कमी और बढ़ेगी, जिससे मानव जाति और पर्यावरण के लिए गंभीर समस्याएँ पैदा होंगी। लगातार बढ़ती वैश्विक आबादी के कारण शुद्ध जल की मांग में तेजी से वृद्धि ने इस प्राकृतिक संसाधन की उपलब्धता को प्रभावित किया है और दुनिया के कई हिस्सों में जल की कमी की स्थिति पैदा हो गई है। विश्व स्तर पर यह भी अनुमान लगाया गया है कि यदि वर्तमान प्रथाएं जारी रहीं तो ताजे जल की मांग और आपूर्ति के बीच का अंतर 2030 तक 40% तक पहुंच सकता है। हालाँकि, वर्तमान स्थिति को संबोधित करने के लिए संयुक्त राष्ट्र ने नवीनतम संयुक्त राष्ट्र विश्व जल विकास रिपोर्ट 2021 के माध्यम से उचित जल प्रबंधन के दृष्टिकोण की रिपोर्ट करके कदम बढ़ाया है, जिसका शीर्षक है "जल का मूल्यांकन" विभिन्न जल दृष्टिकोणों पर विचार करना।

वैश्विक स्तर पर भारत की पहचान उसकी बढ़ती आबादी के कारण जल की कमी की स्थिति का सामना करने वाले देश के रूप में की जाती है। इसके साथ ही जलवायु परिवर्तनशीलता के परिणामस्वरूप देश सूखे और बाढ़ की आपदाओं से भी जूझ रहा है। इसलिए 'स्वक्ष जल मिशन' का अनुकूलन समय की मांग है जो हमारे पर्यावरण को हानि पहुंचाए बिना जल संसाधन के प्रबंधन को पुनर्गठित करने में हमारी मदद कर सकता है। जल की तेजी से बढ़ती मांग को ध्यान में रखते हुए, 1982 में भारत सरकार द्वारा विकसित एक नई राष्ट्रीय जल नीति में देश की नदियों को जोड़ने का

कृषि अभियान्त्रिकी संभाग भा.कृ.अनु.प. - भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल : sunatruptimayee@gmail.com

सुझाव दिया गया था। इस प्रस्ताव को नदी जोड़ो परियोजना अथवा इंटर-रिवर लिंकिंग प्रोजेक्ट (आईआरएल) के रूप में जाना जाता है, जिसका विशिष्ट उद्देश्य भारतीय नदियों को जलाशयों और नहरों के संजाल से जोड़कर भारत में जल संसाधनों का प्रभावी ढंग से प्रबंधन करना है। यह एक बहुत बड़ी परियोजना है जो संरक्षण तथा भंडारण के माध्यम से जल से संबंधित समस्याओं का समाधान कर सकती है. उन क्षेत्रों में जल पहुंचा सकती है जहां जल दुर्लभ हो जाता है। यह दुनिया की सबसे बड़ी और जटिल जल संबंधी परियोजना भी है जो देश की 30 प्रमुख नदियों को जोड़कर पारंपरिक दृष्टिकोण को उभरते नए ज्ञान आधार में बदलने का समर्थन करती है। यद्यपि इस परियोजना में आय के स्रोत को व्यापक बनाने, सिंचाई क्षमता को बढ़ाने, जीवन की गुणवत्ता में सुधार और क्षेत्रीय असमानताओं को कम करके गरीबी को कम करने के संभावित लाभ हैं। इस पृष्ठभूमि और उपलब्ध ज्ञान के आधार पर इस परियोजना को निम्न उद्देश्यों के साथ प्रस्तावित किया गया है:

- i) नहरों के तंत्र (नेटवर्क) के माध्यम से हिमालय और प्रायद्वीपीय नदियों को जोड़ें
- ii) अधिशेष बेसिन से अतिरिक्त जल को दूसरे बेसिन में ले जाया जा सकता है जहां अपर्याप्त भंडारण है
- iii) नदी प्रणाली में बाढ़ का नियंत्रण
- iv) अतिरिक्त जल के माध्यम से जल विद्युत उत्पादन

भारत में नदियों को जोड़ने का औचित्य

वर्षा में स्थानिक और सामयिक भिन्नताएँ अक्सर भारत में कृषि संकट और प्राकृतिक आपदाओं का कारण बनती हैं। इसमें कोई संदेह नहीं है कि हमारी जल नीति में प्रति व्यक्ति जल उपलब्धता को सर्वोच्च प्राथमिकता दी जानी चाहिए। इसके अलावा, भारत की जल नीति में जलवायु परिवर्तनशीलता से वर्षा आधारित भूमि की सुरक्षा को समान प्राथमिकता दी जानी चाहिए। नदी जोड़ो परियोजना के पीछे

यह तर्क है की जल असंतुलन को दूर करने के लिए अधिशेष नदी बेसिन या उप बेसिन से अतिरिक्त जल को अन्य 'कमी' वाले नदी बेसिन में स्थानांतिरत करके जल की कमी की समस्या का स्थायी समाधान प्रदान करना है। किसी दिए गए क्षेत्र के भीतर जल संसाधनों के स्वाभाविक रूप से प्रचलित असमान वितरण के कारण जल की उपलब्धता में असंतुलन को ठीक करने के लिए जल का इंट्रा-इंटर बेसिन ट्रांसफर (आईबीटी) एक प्रमुख जलवैज्ञानिक हस्तक्षेप है। प्रथम दृष्टया, यह भारत की नदियों को आपस में जोड़ने की पिरयोजना शुरू करने के लिए पर्याप्त तर्क है। यद्यपि इस तथ्य को देश भर में लगभग 110 जल अंतरण वृहद परियोजनाओं के प्रस्ताव से प्रेरणा मिला है, जिन्हें या तो क्रियान्वित किया जा चुका है या योजना बनाई जा रही है। भारत की राष्ट्रीय नदी जोड़ो परियोजना निर्माणाधीन परियोजनाओं में से एक है।

भारत में निदयों को जोड़ने के तीन घटक हैं: i) उत्तरी हिमालय की निदयों को जोड़ने वाला घटक (14 आपस में जोड़ने वाली पिरयोजनाएँ) ii) दक्षिणी प्रायद्वीपीय घटक (16 आपस को जोड़ने वाली पिरयोजनाएँ) iii) अंतर्राज्यीय नदी जोड़ने वाला घटक (37 आपस को जोड़ने वाली पिरयोजनाएँ)।

नदी जोड़ो परियोजना के प्रमुख लाभ:

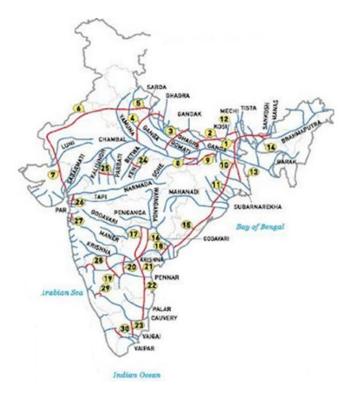
- अगले पांच वर्षों में कृषि उत्पादन में 100 प्रतिशत की अतिरिक्त वृद्धि होगी
- पूरे प्रोजेक्ट के क्रियान्वित होने पर 3400 मेगावाट बिजली पैदा की जा सकेगी
- यह अंतर्देशीय जलमार्ग परिवहन प्रणाली का समर्थन करेगा
- आय के वैकल्पिक स्रोत के रूप में मछली उत्पादन में सुधार करें
- रक्षा की एक अतिरिक्त जलरेखा द्वारा देश की सुरक्षा को बढ़ाया जा सकता है
- अगले 10 वर्षों तक 10 लाख लोगों को रोजगार उपलब्ध करायें
- अधिशेष जल हस्तांतरण द्वारा बाढ़ और सूखे की समस्या को समाप्त किया जा सकता है
- वैकल्पिक, बारहमासी जल संसाधन उपलब्ध कराकर जल संकट की स्थिति का समाधान

- निदयों को जोड़ने वाली बड़ी नहरों से कृषि भूमि की सिंचाई और अंतर्देशीय जलमार्गों की भी सुविधा होने की अपार संभावनाएं है।
- खाद्य उत्पादन को लगभग 200 मिलियन टन प्रति वर्ष से बढ़ाकर 500 मिलियन टन करना
- के प्रमुख नुकसान
- पर्यावरणीय लागत (वनों की कटाई, मिट्टी का कटाव, जलभराव आदि)
- पुनर्वास कोई आसान काम नहीं है
- स्थानीय लोगों के जबरन पुनर्वास के कारण सामाजिक अशांति/मनोवैज्ञानिक क्षति
- राजनीतिक प्रभाव: पड़ोसियों (पाकिस्तान, बांग्लादेश) के साथ तनावपूर्ण संबंध

आईआरएल मुद्दे और चुनौतियाँ

हालाँकि जल की कमी की स्थिति से निपटने के लिए नदी जोड़ो परियोजना में काफी संभावनाएं और प्रभावकारिता है, लेकिन इसे कुछ चुनौतियों से जूझना पड़ा है जो इसकी उपलब्धि में बाधक हैं। ब्रह्मपुत्र और गंगा से जल का विचलन, जो शुष्क मौसम में देश के ताजे जल का 85% प्रवाह प्रदान करता है, एक पारिस्थितिक आपदा में बदल जाएगा। भारतीय राष्ट्रीय जल विकास एजेंसी सैकड़ों जलाशयों और 600 से अधिक नहरों को खोदने की योजना बना रही है जो पूरे पारिस्थितिकी तंत्र को बदल सकती है।

जल अवसंरचना परियोजनाओं के पुनर्वास और पुनर्वास के परिणामस्वरूप वन, कृषि और गैर-कृषि भूमि के बड़े क्षेत्र जलमग्न हो जाएंगे, जिससे अंततः 583,000 से अधिक लोग विस्थापित होंगे। इसके अलावा कोई भी राज्य जल के अंतर-बेसिन हस्तांतरण का समर्थन नहीं कर रहा है। केरल, आंध्र प्रदेश, असम और सिक्किम सहित कई राज्य पहले ही परियो आईआरएल जनाओं का विरोध कर चुके हैं। महत्वपूर्ण संस्थागत और कानूनी मुद्दे भी हैं जिन्हें सुलझाया जाना है क्योंकि अंतर-बेसिन जल हस्तांतरण से संबंधित मामलों से निपटने के लिए कोई तंत्र नहीं है।


कृषि पर प्रभाव

नदी जोड़ो परियोजना की पहली और सबसे महत्वपूर्ण प्रतिबद्धता कृषि भूमि की सिंचाई में जल सुरक्षा प्रदान करना

है जो अंततः देश की खाद्य सुरक्षा का समर्थन करेगी। सिंचाई क्षमता को 34 एमएचए तक बढ़ाना इंटरलिंकिंग परियोजना का प्राथमिक प्रस्ताव है। इंटरलिंकिंग परियोजना पर खाद्य सुरक्षा की निर्भरता ठीक से स्थापित नहीं की गई है क्योंकि आने वाले दशकों में भारतीय कृषि की प्रगति की प्रकृति खाद्य सुरक्षा के दृष्टिकोण पर निर्भर होगी। यह बताया गया है कि अगले 50 वर्षों में सिंचित और वर्षा आधारित भूमि दोनों में खाद्य फसलों की अनुमानित उपज में पर्याप्त वृद्धि होगी, जो वर्तमान विकास से दर एनसीआईडब्ल्यूआरडीपी के अनुसार भारतीय कृषि की वर्तमान निम्न प्रोफ़ाइल वृद्धि अगले पांच दशकों में सिंचित और वर्षा आधारित भूमि में क्रमशः 4000 और 1500 किलोग्राम/हेक्टेयर होने का अनुमान है। इस परिदृश्य में, उदाहरण के लिए 2050 में जल उपयोग दक्षता को 0.35 से 0.60 तक बढ़ाने के लिए उपलब्ध क्षमता के उत्तम उपयोग और सिंचाई के भौतिक विस्तार की मांग के स्थान पर इस खाद्य आवश्यकता को पूरा करने के लिए सिंचाई जल की अधिक मांग नहीं हो सकती है। अर्थव्यवस्था के आधार पर यह सुझाव दिया जा सकता है कि यह विस्तार नदियों को जोड़ने की परियोजना के माध्यम से प्राप्त किया जा सकता है अथवा सूक्ष्म और मध्य स्तर पर जल संचयन और संरक्षण को बढ़ावा दिया जा सकता है। इसलिए नदी जोड़ो परियोजना देश के कृषि विकास और खाद्य सुरक्षा बनाए रखने के लिए एकमात्र विकल्प है। चित्र 1 में इस परियोजना का अभिकल्पन दर्शाया गया है।

नदी जोड़ो परियोजना का पर्यावरणीय प्रभाव

हमें यह स्पष्ट रूप से ज्ञात है कि पारिस्थितिक प्रभाव को देखे बिना निदयों को सीधी पाइपलाइनों की तरह जोड़ना हमारे पर्यावरण के लिए बहुत हानिकारक हो सकता है। नदी मोड़ के परिणामस्वरूप तलछट भार, नदी आकृति विज्ञान और नदी बेसिन में बने डेल्टा के आकार की भौतिक और रासायनिक संरचना में महत्वपूर्ण परिवर्तन हो सकते हैं जो देश की सिंचाई क्षमता को प्रभावित करते हैं। पर्यावरण विदों का मानना है कि नदी जोड़ो परियोजना से पारिस्थितिकी तंत्र में एक बड़ा व्यवधान होगा जो इंगित करता है कि जलवायु परिवर्तन के संबंध में वर्षा के क्रम में बदलाव की संभावना है। समुद्री पारिस्थितिकी तंत्र गड़बड़ा जाएगा और वर्षा की भौतिक प्रक्रिया प्रभावित होगी। पर्यावरण वैज्ञानिकों का तर्क

चित्र 1: भारत की नदी जोड़ो परियोजना का अभिकल्पन

है कि बड़ी संख्या में जलाशयों की स्थित विनाशकारी साबित होगी। एक विषैली नदी को एक स्वक्ष नदी से जोड़ने से हमारी सभी नदियों के साथ-साथ जीवित प्राणियों पर भी विनाशकारी प्रभाव पड़ेगा।

इस के अतिरिक्त यह भी अनुमान लगाया गया है कि पिछले पांच दशकों में बांधों, बिजली संयंत्रों, राजमार्गों और ऐसी अन्य बुनियादी ढांचा विकास परियोजनाओं के निर्माण से पचास मिलियन लोग विस्थापित हुए हैं जो सामाजिक लागत को प्रभावित करते हैं। परंतु यह मात्र नकारात्मकता को देखने का ही प्रयास है। कृपया ध्यान दीजिये कि एक ही समय पर एक देश के दो अलग अलग भू-भाग जलाधिक्य और जलाल्पता से जूझ रहे हों और जीवन (मानव, जीव, जन्तु और पशुधन) की हानि होने के साथ-साथ संपदा का भी हास होता हो तो भी क्या यह उचित होगा कि अधिक जल क्षेत्रों को अल्प जल क्षेत्रों से न जोड़ा जाय? मेरे विचार से पारिस्थितिकी तंत्र में कोई अधिक व्यवधान नहीं

होगा और विषैली निदयों को भी सदा सर्वदा के लिए तो ऐसे ही नहीं छोड़ा जा सकता है। इस पर स्वाक्ष जल अधिक दूषित निदयों को कम दूषित बनाने में सक्षम होगा। यदि हम अपने आधे देश को बाढ़ की विभीषिका से और बाकी के आधे देश को सूखे की विभीषिका से बचा सकने में समर्थ हैं तो मैं और मेरे सहयोगी नदी जोड़ो परियोजना के पक्ष में रहना पसंद करेंगे।

जलवायु परिवर्तन और परिवर्तनशीलता के परिणामस्वरूप बाढ़, सूखा आदि उत्पन्न होने वाली जल संबंधी समस्याओं के समाधान के लिए निदयों को जोड़ने की परियोजना एक बड़ी चुनौती है और कृषि उत्पादन को बढ़ाने का एक अवसर भी है। यह परियोजना मुख्य रूप से सिंचाई के लिए प्रस्तावित की गई है, लेकिन बाद में बाढ़ और सूखा निवारण, पेयजल आपूर्ति आदि जैसे अन्य विविध औचित्य की तलाश की गई, लेकिन प्रस्ताव में स्थिरता और व्यवहार्यता की किंचित कमी ज्ञात होती है जो इस परियोजना की सफलता हेत् एक गंभीर चिंता का विषय बन गई है। बांधों,

जलाशयों, बैराजों, जलविद्युत संरचनाओं और नहरों के नेटवर्क के निर्माण के साथ एकीकृत दीर्घकालिक रणनीति अंततः नदियों को जोडने को जटिल बनाती है।

यद्यपि, जल की कमी की स्थित के लिए निदयों को आपस में जोड़ना निश्चित रूप से एक प्रशंसनीय समाधान है, लेकिन भौतिक मूल्यांकन के लिए एक टोही सर्वेक्षण और विस्तृत अध्ययन की आवश्यकता होनी चाहिए तािक पिरयोजना को अनुमान के अनुसार पूरा किया जा सके। इसके साथ ही एक समन्वयित (हाइब्रिड) नदी जोड़ो अति आवश्यक है जहां व्यक्तियों (शोध और अनुसंधानकर्ताओं एवं नीित निर्माताओं तथा प्रभावित पक्ष के सभी लोगों), एक समुदाय और समाज की निश्चित भूमिकाएं शािमल की जानी चाहिए तािक निर्मित और उपयोग की जाने वाली सिंचाई क्षमता के बीच के अंतर को संतुलित जल वितरण तकनीक द्वारा पाटा जा सके।

बागवानी फसलों में जलवायु स्मार्ट जल प्रबंधन तनुश्री साहू¹, सुनील कुमार², देबाशीष होता³, मीनाक्षी बदु⁴

हमारे चारों ओर हो रहे अप्रत्याशित परिवर्तनों के कारण जीवनशैली में बदलाव के साथ-साथ भारतीय बागवानी की कृषि पद्धतियों में भी बदलाव आया है। बागवानी फसलें विशेष रूप से गहन देखभाल के लिए होती हैं, जो सटीक प्रबंधन रणनीतियों में वृद्धि के साथ उच्च उपज और इष्टतम गुणवत्ता पैदा करती हैं। वर्ष 1980 से 2023 के दशक के दौरान, सिंचाई विधियों की उच्च लागत, मिट्टी के लवणीकरण और पर्यावरण संरक्षण की समस्याओं के कारण सिंचित क्षेत्रों में समग्र कमी आई है। यद्यपि, बदलते वैश्विक जलवायु परिदृश्य के अंतर्गत, स्थायी जल प्रबंधन पर ध्यान केंद्रित किया गया है। यह मुख्य रूप से अनुप्रयोग स्तर के दौरान होने वाली हानि को कम करके उच्च जल उपयोग दक्षता को लक्षित करता है। जलवायु स्मार्ट जल प्रबंधन का उद्देश्य जल की उपलब्धता और आवश्यकताओं को मात्रा और गुणवत्ता, स्थान और समय, उचित लागत पर और स्वीकार्य पर्यावरणीय प्रभाव के साथ मेल कराना है। सिंचाई की व्यापक अनुशंसा पद्धति, जिसमें जल की बहुत अधिक हानि होती है, को अपनाने के स्थान पर, दृष्टिकोण मांग आधारित होना चाहिए। सिंचाई विधियों के स्थान पर सिंचाई नियमन (शेड्यूलिंग) (कब सिंचाई करें और कितनी सिंचाई करें) हमारी सर्वोच्च प्राथमिकता होनी चाहिए।

स्थानीय सिंचाई

स्थानीय सिंचाई का तात्पर्य पौधे प्रणाली के जड़ क्षेत्र में जल के अनुप्रयोग से है।

¹भा.कृ.अनु.प. - भारतीय मृदा एवं जल संरक्षण संस्थान, अनुसंधान केंद्र आगरा, उत्तर प्रदेश ²भा.कृ.अनु.प. - राष्ट्रीय लीची अनुसंधान केंद्र, मुजफ्फरपुर, बिहार ³कृषि विज्ञान संकाय, शिक्षा अनुसंधान (मानित विश्वविद्यालय), भुवनेश्वर, ओडिशा ⁴कृषि संकाय, श्री श्री विश्वविद्यालय, कटक, ओडिशा ईमेल: tanushreesahoo33@gmail.com इसका प्रयोग ड्रिप प्रणाली या माइक्रो-स्प्रिंकलर प्रणाली के माध्यम से किया जाता है। ड्रिप सिंचाई के साथ जल को धीरे-धीरे प्लास्टिक पाइपों से छोटे उत्सर्जक छिद्रों के माध्यम से डिस्चार्ज दर ≤ 12 लीटर प्रति घंटे के साथ डाला जाता है। माइक्रो-स्प्रेयर (माइक्रो-स्प्रिंकलर) सिंचाई के साथ 12 से 200 लीटर/घंटा की डिस्चार्ज दर के साथ पौधे द्वारा कब्जा की गई मिट्टी की सतह के हिस्से पर जल का छिड़काव किया जाता है।

सिंचाई नियमन (शेड्यूलिंग)

अधिकांश मामलों में, किसान का कौशल फसलों की सिंचाई समय-निर्धारण के लिए उपयोगी होता है, लेकिन प्रौद्योगिकी की प्रगति के साथ, सटीक सिंचाई समय-निर्धारण निर्धारित करने के लिए विभिन्न विधियों का भी उपयोग किया जाता है। मृदा जल सामग्री माप (टीडीआर), मृदा जल क्षमता का माप (टेन्सियोमीटर) और दूर से संवेदित मृदा नमी मीटर कई अन्य विकल्प हैं जिन्हें कोई भी सिंचाई का समय निर्धारित करने के लिए अपना सकता है।

फसल तनाव प्रचालक (पैरामीटर)

अधिकतर पौधा स्वयं जल की आवश्यकता को दर्शाने के लिए कुछ संकेत दिखाता है। पत्ती की जल की

फर्टिगेशन यूनिट (स्रोत: www.tnau.ac.in) क्षमता और पत्ती की जल की मात्रा, तने या फल के व्यास में परिवर्तन, रस प्रवाह माप, और चंदवा तापमान आदि पौधों जल की आवश्यकताओं को दर्शाने के लिए कुछ अवलोकन हैं।

जलवायु स्मार्ट जल प्रबंधन के लिए प्रमुख रणनीतियाँ

जलवायु प्रचालक

यह फसल की जल की आवश्यकता की गणना के लिए एक अप्रत्यक्ष विधि है। मौसम डेटा और अनुभवजन्य समीकरण, जो एक बार स्थानीय रूप से कैलिब्रेट हो जाते हैं, किसी दिए गए क्षेत्र के लिए संदर्भ वाष्पीकरण (ईटीओ) का सटीक अनुमान प्रदान करते हैं, का उपयोग किया जाता है। फिर, उचित फसल गुणांक का उपयोग करके फसल वाष्पीकरण-उत्सर्जन (ईटीसी) का अनुमान लगाया जाता है। इन तकनीकों में वाष्पीकरण शामिल है फसल वाष्पीकरण-उत्सर्जन ईटीओ गणना के लिए माप, जलवायु डेटा (हवा का तापमान, आरएच, हवा की गित, धूप के घंटे) और रिमोट सेंस्ड ईटी का उपयोग करके फसल वाष्पीकरण-उत्सर्जन का आंकलन।

मृदा जल संतुलन

मृदा जल संतुलन दृष्टिकोण का उद्देश्य जल संरक्षण समीकरण के माध्यम से जड़ वाली मिट्टी में जल की मात्रा का अनुमान लगाना है: Δ (एडब्ल्यूसी × जड़ गहराई) = प्रवेश का संतुलन + बाहर जाने वाले जल प्रवाह, जहां एडब्ल्यूसी उपलब्ध जल सामग्री है। विशिष्ट सिंचाई कैलेंडर तैयार करने के लिए परिष्कृत मॉडलों द्वारा मृदा जल धारण विशेषताओं, फसल और जलवायु डेटा का उपयोग किया जाता है।

फर्टिगेशन

इस प्रकार की प्रणाली के लिए अधिकतर जल में घुलनशील उर्वरक उपयुक्त होते हैं। फर्टिगेशन यूनिट की स्थापना पौधों को जल और पोषक तत्व दोनों की आपूर्ति के मामले में दोहरे उद्देश्य को पूरा करती है। इसका उपयोग बड़े पैमाने पर उच्च मूल्य वाली सब्जी फसलों की संरक्षित खेती में किया जाता है। पोषक तत्वों के ग्रहण का बागवानी फसलों के आर्थिक मापदंडों पर सीधा संबंध है। मिट्टी के उर्वरीकरण या एकल जल में घुलनशील उर्वरक के साथ उर्वरीकरण की तुलना में वृद्धि चरणवार फर्टिगेशन का पोषक तत्व ग्रहण पर सीधा प्रभाव पड़ा। उनके अध्ययन में, उपचार टी4 (जब 100% पोषक तत्व फर्टिगेशन के माध्यम से दिए जाते हैं) से उच्चतम पोषक तत्व उपयोग दक्षता देखी गई।

अपर्याप्त सिंचाई पद्धतियाँ

हमारे देश में सीमांत क्षेत्र का काफी हिस्सा है, जो विभिन्न स्तरों की कठिनाइयों के साथ संसाधनहीन है। तीन अलग-अलग प्रथाएँ हैं जैसे; कमी वाली सिंचाई, आंशिक जड़ सूखना और उपसतह सिंचाई, जो शुष्क और अर्ध-शुष्क बागवानी पारिस्थितिकी तंत्र के लिए वरदान साबित हो सकती है। कई फलों की फसलों में, कमी वाली सिंचाई को सफलतापूर्वक लागू किया गया है और उपज और गुणवत्ता के मामले में इसका सकारात्मक प्रभाव देखा गया है। लेकिन, हमें एक बात का ध्यान रखना होगा कि, कमी का समय महत्वपूर्ण चरणों के साथ मेल नहीं खाना चाहिए, जो बागवानी फसलों में सबसे संवेदनशील चरण है। विभिन्न प्रूनस प्रजातियों में, जैसे कि बादाम (प्रूनस डलसिस (मिल) डी.ए. वेब), फूल आने और तेजी से वनस्पति और फल बढ़ने के चरण (चरण II और III) और कटाई के बाद (चरण V) को महत्वपूर्ण अवधि के रूप में रिपोर्ट किया गया है क्योंकि जल की कमी उपज को प्रभावित करती है।

हमारे प्राकृतिक संसाधनों का विवेकपूर्ण उपयोग वर्तमान कृषि क्षेत्र के अस्तित्व के लिए महत्वपूर्ण हो गया है। विशेष रूप से, कमी के युग में, जल बचाने की तकनीक सीखना और जल की एक बूंद से अधिकतम उत्पादन प्राप्त करना बुद्धिमानी है। इसलिए, टिकाऊ जल प्रबंधन दृष्टिकोण को व्यापक पैमाने पर अपनाने से, किसान निश्चित रूप से भरपूर लाभ प्राप्त कर

सकते हैं। 'प्रति बूंद अधिक फसल' हर किसी के मन में होना चाहिए और हमारे कार्य क्षेत्र स्तर पर जल की बर्बादी को कम करने की ओर उन्मुख होने चाहिए।

सिंचाई निर्धारण विधियाँ और उनका कृषि में उपयोग

बिपिन कुमार, शालू, हिमानी बिष्ट, विजय प्रजापति, नीता दिवेदी और पी.एस. ब्रह्मानन्द

फसलों को उगाने के लिए जल एक आवश्यक घटक है। आर्द्र जलवायु में विद्यमान जल, वर्षा जल, मिट्टी की नमी फ़सल चक्र को पूरा करने के लिए पर्याप्त नहीं होते है। अत: सिंचाई के माध्यम से आवश्यक जल की आपूर्ति की जाती है। उपयुक्त समय और सही मात्रा में जल नहीं देने से पौधे में तनाव हो सकता है और फसलों की गुणवत्ता और उपज में व्यापक प्रभाव पड़ता है। दूसरी ओर, अधिक पानी देने से जड़ क्षेत्र के नीचे पोषक तत्वों के रिसाव का खतरा बढ़ जाता है जिससे जल, ऊर्जा और पोषक तत्वों की बर्बादी होती है और उनके उपयोग दक्षता मे कमी आती हैं। पर्यावरण पर भी इससे प्रतिकूल प्रभाव पड़ता हैं। जलवायु परिवर्तन, वर्षा के पैटर्न मे बदलाव होने से सिंचाई का निर्धारण जटिल और चुनौतीपूर्ण हो जाता है।

सिंचाई का समय निर्धारण एक ऐसी विधि है जो फसल को सही समय पर उचित मात्रा में पानी देने के लिए निर्धारित करती है, ताकि फसल की पूर्ण उत्पादन क्षमता प्राप्त हो सके। सिंचाई के पानी का समय निर्धारण मिट्टी की नमी माप और/या मौसम के आंकड़ों पर आधारित है, जो वाष्पीकरण और संवहन के अनुमान हैं।

सिंचाई के समय निर्धारण के तरीके हैं:

- 1. मौसम आधारित सिंचाई का समय निर्धारण
- 2. संवेदक आधारित सिंचाई का समय निर्धारण
- 3. पौधों के आधार पर सिंचाई का समय निर्धारण
- 4. IoT सेंसर तकनीक
- 5. स्मार्टफोन ऐप

सिंचाई शेड्यूलिंग विधि:

1. अहसास और दिखावट

जल प्रौद्योगिकी केंद्र भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ईमेल: bipiniari@gmail.com सबसे लोकप्रिय और त्वरित तरीका इसकी अनुभूति और दिखावट पर आधारित है। मृदा जांच का उपयोग आमतौर पर मिट्टी के नमूने लेने के लिए किया जाता है। प्रत्येक मिट्टी के प्रकार का शीर्ष स्थिति से मेल खाता है शून्य मृदा नमी की कमी को क्षेत्र क्षमता के रूप में भी जाना जाता है। प्रत्येक मिट्टी के नीचे अधिकतम मिट्टी की नमी की कमी की स्थिति से मेल खाता है, जिसे भी जाना जाता है मुरझाने के बिंदु के रूप में. मिट्टी की नमी की कमी उपलब्ध नमी को भी प्रस्तुत करती है, यह विधि मात्रात्मक नहीं है और इसके व्यक्तिगत आधार पर आंकी जाती है, जिसमें परिशुद्धता का अभाव होता है|

2. ग्रेविमेट्रिक विधि

पानी को समझने के लिए मिट्टी की नमी एक महत्वपूर्ण पैरामीटर है। मिट्टी में हलचल. मिट्टी के नमूने लेना वास्तविक माप का सीधा तरीका है। मिट्टी की नमी का स्तर. इस विधि में मिट्टी की ज्ञात मात्रा के एक नमूने को तौलने की आवश्यकता होती है। और फिर पानी के द्रव्यमान की गणना करने के लिए इसे 105°C पर ओवन में सुखाने के बाद फिर से तौला जाता है की कितना पानी सूखने से नष्ट हो गया। यह विधि ग्रेविमेट्रिक जल सामग्री (जी/जी) की गणना करने की अनुमित देती है और मिट्टी का थोक घनत्व (ग्रा./ सेमी³)। ग्रेविमेट्रिक जल सामग्री (सेमी³) की गणना करने की अनुमित देता है/सेमी³)।

3. मौसम आधारित सिंचाई निर्धारण विधि

मौसम आधारित सिंचाई निर्धारण पद्धित मौसम की स्थिति पर आधारित है। चार प्रमुख मौसम पैरामीटर वाष्पीकरण-उत्सर्जन (ई.टी.), निर्धारित करते हैं, जो इसे संचालित करता है मौसम आधारित सिंचाई शेड्यूलिंग विधि। मौसम के पैरामीटर सौर विकिरण, वायु तापमान, सापेक्ष आर्द्रता और हवा की गित। सौर विकिरण जितना अधिक होगा, उतना ही अधिक ईटी. होगा इसलिए क्योंकि

वाष्पीकरण के लिए सूर्य की रोशनी मुख्य ऊर्जा स्रोत है|पानी, हवा जितनी गर्म होगी, ईटी उतना ही अधिक होगा, क्योंकि यह अधिक जलवाष्प धारण कर सकता है। हवा जितनी सूखी होगी, ई.टी. उतना ही अधिक होगा, क्योंकि इसमें पहले से ही कम जल वाष्प होता है| जितनी

हवा जितनी सूखी होगी, ई.टी. उतना ही अधिक होगा, क्योंकि इसमें पहले से ही कम जल वाष्प होता है। जितनी अधिक हवा, उतना अधिक ईटी। आर्द्र जलवायु वाले क्षेत्रों में, सौर विकिरण और वायु तापमान दैनिक ई.टी. निर्धारित।

4. मृदा नमी सेंसर-आधारित सिंचाई शेड्यूलिंग विधि

मिट्टी की नमी को मापने का एक वैकल्पिक तरीका मिट्टी की नमी सेंसर का उपयोग करना है। एक विशिष्ट मृदा नमी सेंसर मात्रात्मक जल सामग्री (सेमी3/सेमी3) का अनुमान मिट्टी में लगाता है। मृदा नमी सेंसर मिट्टी की नमी के स्तर में परिवर्तन की निगरानी करने की अनुमित देते हैं मिट्टी को बिना परेशान किए. सेंसर को मिट्टी की कई गहराई पर स्थापित किया जा सकता है और मिट्टी में जल प्रवाह की निगरानी किया जा सकता है। सेंसर. मृदा तनाव सेंसर जड़ों से पानी खींचने के लिए आवश्यक बल को मापते हैं।

5. पौध-आधारित सिंचाई शेड्यूलिंग विधि

पौधे-आधारित सिंचाई शेड्यूलिंग की एक सामान्य विधि सैप प्रवाह सेंसर का उपयोग करना है। सैप प्रवाह पानी, पोषक तत्वों, हार्मोन और अन्य किसी भी चीज़ को मापता है, वह पानी जो किसी पौधे के तने से बहता है। सेंसर एक हीटर का उपयोग करते हैं और रस द्वारा वहन की गई ऊष्मा की मात्रा को मापने के लिए थर्मोकपल का उपयोग करते है। एक बार सेंसर स्थापित हो जाएं और पैरामीटर सेट हो गए हैं, सिस्टम सैप प्रवाह को रिकॉर्ड और गणना करेगा, जो किसी भी समय सिस्टम से डाउनलोड किया जा सकता है।

6. IoT (इंटरनेट ऑफ थिंग्स) सेंसर तकनीक

कृषि प्रौद्योगिकी उद्योग कृषि-4.0 की ओर बढ़ रहा है, जिसमें शामिल हैं इंटरनेट ऑफ थिंग्स (IoT) और प्रथाओं में सुधार के लिए बड़े डेटा का उपयोग कार्यकुशलता. कई माइक्रोकंट्रोलर सिस्टम, जैसे Arduino और ESP 32, का उपयोग किया जा सकता है

कृषि क्षेत्रों में. एनालॉग या डिजिटल मृदा नमी सेंसर को इससे जोड़ा जा सकता है मिट्टी की स्थिति को मापने के लिए माइक्रोकंट्रोलर प्रणाली। मिट्टी की स्थिति के अलावा, पानी का दबाव, ऊर्जा उपयोग, सिंचाई प्रणाली सहित अन्य सिंचाई जानकारी एकरूपता और पर्यावरणीय स्थितियों को एक माइक्रोकंट्रोलर का उपयोग करके मापा जा सकता है। कई माइक्रोकंट्रोलर सिस्टम वाई-फाई, सेल्युलर या लॉन्ग रेंज रेडियो (लोरा) नेटवर्क सिस्टम का उपयोग करके वेब सर्वर पर डेटा भेजने की अनुमित देते हैं। रिमोट के फायदे निगरानी प्रणाली की विशेषता यह है कि यह डेटा लॉगर्स के प्रदर्शन की निगरानी करने की अनुमित देता है सेंसर और क्षेत्र का दौरा किए बिना किसी भी समस्या का पता लगाया जा सकता है। और यह अनुमित भी देता है किसान समय पर कृषि प्रबंधन निर्णय लें।

7. स्मार्टफ़ोन एपीपी-आधारित सिंचाई शेड्यूलिंग

सिंचाई शेड्यूल के लिए कई स्मार्टफोन ऐप्स उपलब्ध हैं। हाल ही में बड़ी संख्या में सिंचाई शेड्यूलिंग निर्णय समर्थन उपकरण विकसित किए गए हैं| दशकों से, उनमें से कई मोबाइल ऐप्स के माध्यम से उपलब्ध हैं। उदाहरण के लिए, जल सिंचाई कुशल अनुप्रयोग के लिए शेड्यूलिंग (WISE) को कोलोराडो राज्य विश्वविद्यालय द्वारा एक सिंचाई शेड्यूलिंग मोबाइल ऐप के रूप में विकसित किया गया जो वाष्पीकरण-उत्सर्जन डेटा का उपयोग करता है।

जल संसाधन के रूप में सिंचाई शेड्यूल अधिक महत्वपूर्ण साबित होगी। इष्टतम सिंचाई अनुप्रयोग सुनिश्चित करने के लिए सिंचाई शेड्यूलिंग महत्वपूर्ण है। सही समय पर सही मात्रा में पानी लगाने में सहयोग करता है। उपज, पिन्पंग लागत में कमी, भूजल या जलधाराओं में नाइट्रेट का निक्षालन कम होना, मृदा स्वास्थ्य में सुधार, और निवेश पर अधिकतम लाभ। भविष्य में, AI मशीन लर्निंग तकनीकों के साथ IoT सेंसर तकनीक का समावेश किया जाएगा। सिंचाई सिफ़ारिशों की परिशुद्धता और सटीकता में वृद्धि की उम्मीद है।

डिजिटल कृषि: स्मार्ट फार्मिंग का नया तरीका

मोनालिशा प्रमाणिक¹, मनोज खन्ना¹, विजय प्रजापति¹, राजीव रंजन²

आधुनिक समय में कृषि में डिजिटल प्रौद्योगिकी का प्रयोग करके स्मार्ट खेती का नया दौर आरंभ हुआ है, जिसे हम डिजिटल कृषि कह सकते हैं। यह तकनीकी उन्नति ने कृषि सेक्टर में कई सुधार किए हैं और उत्पादकता में वृद्धि को प्रोत्साहित किया है। डिजिटल कृषि में स्मार्ट सेंसर्स, नेटवर्किंग, और डेटा एनालिटिक्स का उपयोग किया जाता है ताकि किसान सटीक जानकारी प्राप्त कर सकें और उन्हें बेहतर सिंचाई, कीट और बीमारी से संबंधित निर्णय लेने में मदद मिले। इससे उन्हें समय, ऊर्जा, और संसाधनों का सर्वोत्तम उपयोग करने का भी अवसर मिलता है। डिजिटल कृषि के तंत्र में शामिल होने से, किसान अपनी फसलों की स्थिति को द्रस्थ स्थान से भी निगरानी रख सकता है और समय पर सही निर्णय लेने में सक्षम होता है। स्मार्ट खेती के इस नए परिदृश्य में, तकनीकी उन्नतियों ने बेहतर पैदावार, कम खर्च, और आधुनिक तरीकों से संभाली जा सकने वाली फसलों की संभावना को बढ़ा दिया है। इस प्रणाली ने कृषि सेक्टर को नए आयाम दिए हैं और किसानों को नए तकनीकी साधनों से जोड़कर उन्हें अधिक समृद्धि प्राप्त करने का संभावना दिखाया है। डिजिटल कृषि ने समृद्धि, विकास, और खेती के साथ जुड़े कई चुनौतियों का समाधान प्रदान किया है और इसे स्मार्ट खेती की दिशा में एक महत्वपूर्ण कदम बना दिया है। जल प्रौद्योगिकी केंद्र ने हरियाणा के नूंह जिले में सटीक खेती और विकास केंद्र परियोजना के तहत 100 किसानों को जियोकृषि ऐप के साथ नामांकित किया है। ऐप उपयोगकर्ता के मोबाइल में मौसम, सिंचाई, कीट और बीमारी से संबंधित अलर्ट प्रदान करता है। जियो कृषि ऐप सटीक सिंचाई प्रदान करने के लिए किसानों को वाष्पीकरण-उत्सर्जन आधारित सिंचाई अलर्ट देता है।

'जल प्रौद्योगिकी केंद्र , भा.कृ.अनु.प.- भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली ²कृषि भौतिकी विभाग, भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली

ईमेल: monalishapramanik@gmail.com

वाष्पीकरण-उत्सर्जन मौसम के मापदंडों और फसल के विकास के चरणों पर निर्भर करता है। जियो कृषि ऐप किसानों को कब और कितनी सिंचाई करनी है इसकी जानकारी भेजता है ताकि सिंचाई अनुप्रयोग दक्षता को बढ़ाया जा सके। यह किसानों को इनपुट संसाधनों को बेहतर तरीके से प्रबंधित करने और सही समय पर सही निर्णय लेने में मदद करता है।

चित्र 1: डेटा लॉगर के साथ विभिन्न सेंसरों का IoT आधारित एकीकरण

प्रस्तावना

कृषि, जो हमारे देश के आर्थिक और सामाजिक स्तर पर महत्वपूर्ण भूमिका निभाती है, उसमें नए तकनीकी उत्पादों और अनुसंधानों के प्रयोग से सुधार करने की दिशा में एक नया कदम है - डिजिटल कृषि। इसका उद्दीपन स्मार्ट फार्मिंग में हो रहा है, जिससे कृषकों को अधिक सहारा मिल रहा है और कृषि उत्पादकता में वृद्धि हो रही है। डिजिटल कृषि और प्रेसिजन फार्मिंग ने कृषि क्षेत्र को एक नए दौरे में पहुंचा दिया है। इससे न केवल खेती में वृद्धि हो रही है, बल्कि किसानों को भी नई तकनीकों का उपयोग करने का अवसर मिल रहा है। यह एक स्मार्ट खेती की दिशा में एक महत्वपूर्ण कदम है जो भविष्य में खाद्य सुरक्षा और किसानों की आर्थिक स्थिति में सुधार कर सकता है।

डिजिटल कृषि क्या है?

1. **डिजिटल कृषि**: एक प्रौद्योगिकी-प्रधान खेती प्रणाली है जो विभिन्न तकनीकी उपायों का

उपयोग करके कृषि क्षेत्र को सुधारती है। इसमें सेंसर्स, डाटा एनालिटिक्स, इंटरनेट ऑफ थिंग्स (IoT), और अन्य तकनीकी उपकरणों का समुचित इस्तेमाल होता (चित्र 1) है ताकि किसान अपनी खेती को बेहतर ढंग से प्रबंधित कर सके।

- 2. प्रीसिजन फार्मिंग: डिजिटल कृषि का एक महत्वपूर्ण हिस्सा प्रीसिजन फार्मिंग है। इसमें खेती के लिए सटीक तकनीकों का उपयोग होता है जो उचित समय पर उचित स्थान पर इस्तेमाल होने वाले उपकरणों और उदाहरणों की मदद से होता है। इससे न केवल संसाधनों का बेहतर उपयोग होता है, बल्कि खेती की उत्पादकता में भी सुधार होती है।
- 3. सेंसर्स और डाटा एनालिटिक्स का उपयोग: प्रेसिजन फार्मिंग में, सेंसर्स का विशेष रूप से महत्व है। ये सेंसर्स खेतों में लगे होते हैं और विभिन्न पैरामीटर्स को मापते हैं जैसे कि मिट्टी की नमी, तापमान, और पोषण स्तर। इस डेटा को एकत्र करने के बाद, उसे डाटा एनालिटिक्स का उपयोग करके विश्लेषित किया जाता है जो किसानों को यह बताता है कि कौन से क्षेत्र में कौन सा उपाय करना चाहिए ताकि उनकी फसलें बेहतर बन सकें।
- 4. इंटरनेट ऑफ थिंग्स (IoT): इंटरनेट ऑफ थिंग्स का उपयोग भी डिजिटल कृषि में किया जाता है। खेतों में लगे सेंसर्स और अन्य उपकरण इंटरनेट के माध्यम से जुड़े होते हैं तािक वे एक डेटा नेटवर्क के माध्यम से आपस में संवाद कर सकें। इससे किसान दूरस्थ स्थान से भी अपनी खेती को मॉनिटर और कंट्रोल कर सकते हैं।
- 5. लाभ: डिजिटल कृषि के अंतर्गत प्रेसिजन फार्मिंग का अनुसरण करने से किसानों को कई लाभ होते हैं। सटीक तकनीकों का उपयोग करने से उन्हें समय और श्रम की बचत होती है, और साथ ही उत्पादकता में भी सुधार होती है। सेंसर्स और डेटा एनालिटिक्स के माध्यम से खेती के लिए

आवश्यक जानकारी प्राप्त करने से किसान अपनी हैं, जिससे उत्पादकता में वृद्धि होती है। फसल की देखभाल को बेहतर ढंग से कर सकते

मोबाइल एप्लिकेशन के उपयोग के क्षेत्र

- 1. फसल प्रबंधन: मोबाइल एप्लिकेशन के माध्यम से किसान अपनी फसलों का पूरा प्रबंधन कर सकता है। यह एप्लिकेशन उन्हें बुआई के समय सहायक बना सकता है, उचित समय पर पानी पुर्ति करने के लिए सुझाव दे सकता है, और फसलों की देखभाल के लिए उपयुक्त जानकारी प्रदान कर सकता है।
- 2. बीज चयन: एक अच्छा बीज किसान के लिए सफल खेती का पहला कदम है। मोबाइल एप्लिकेशन उन्हें उचित बीजों का चयन करने में मदद कर सकता है, जो उनके क्षेत्र और मौसम के अनुसार सबसे उपयुक्त हैं।
- 3. कृषि सुझाव: मोबाइल एप्लिकेशन किसानों को विभिन्न पहलुओं पर तकनीकी सुझाव प्रदान कर सकता है। इससे उन्हें बेहतरीन खेती के लिए सर्वोत्तम तकनीक, खाद्य, और उपयुक्त उपायों के बारे में जानकारी मिलती है।
- 4. सिंचाई अलर्ट: यह किसानों को सचेत करता है कि फसल में कब सिंचाई करनी है और कितनी सिंचाई करनी है। सिंचाई का कार्यक्रम फसल के वाष्पीकरण-उत्सर्जन के आधार पर तय किया जाता है। वाष्पीकरण-उत्सर्जन दर की गणना विभिन्न फसल विकास चरणों में स्थान के दैनिक मौसम पैरामीटर से की जाती है।
- 5. रोग और कीट प्रबंधन: मोबाइल एप्लिकेशन किसानों को फसलों के खिलाफ रोग और कीटों के लिए सतर्क कर सकता है और उन्हें इस समस्या का सामना करने के लिए सुझाव प्रदान कर सकता है।
- 6. बाजार जानकारी: मोबाइल एप्लिकेशन से किसान बाजार की जानकारी प्राप्त कर सकता है, जिससे उसे अपने उत्पादों को बेहतर मूल्य पर बेचने में मदद मिल सकती है।

- 7. आधुनिक खेती तकनीक: किसान एप्लिकेशन के माध्यम से आधुनिक खेती तकनीक और उपकरणों के लिए सुझाव प्राप्त कर सकता है, जो उसे अपनी खेती को बेहतर बनाने में मदद कर सकते हैं।
- 8. मौसम सुचना: मोबाइल एप्लिकेशन किसानों को मौसम के परिवर्तनों के बारे में सूचित कर सकता है, जिससे उन्हें अपनी खेती के लिए सही निर्णय लेने में मदद मिल सकती है।

डिजिटल कृषि के फायदे

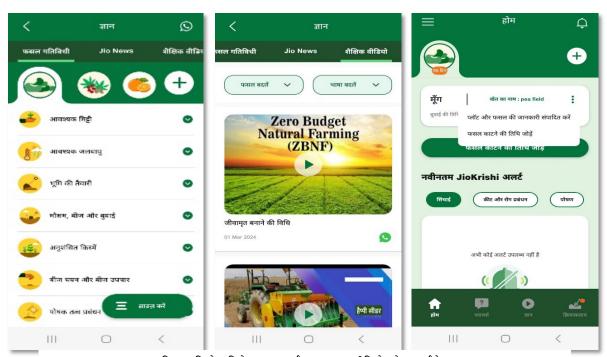
डिजिटल कृषि के अभिवादन में कई फायदे हैं, जो इसे खेती क्षेत्र में लाने के लिए सराहनीय हैं।

- 1. जल संरक्षण: मोबाइल एप्लिकेशन के माध्यम से किसान बेहतर रूप से पानी प्रबंधन कर सकता है और इसे अधिक सुरक्षित तरीके से उपयोग कर सकता है। यह जल संरक्षण में मदद करने के लिए सुझाव दे सकता है और उपयुक्त समय पर सिंचाई की जाने वाली तकनीकों के बारे में सूचना प्रदान कर सकता है। डिजिटल मोबाइल कृषि ऐप के माध्यम से फसल के वाष्पीकरण-उत्सर्जन के आधार पर पानी का उपयोग करके काफी मात्रा (30-40%) में पानी बचाया जा सकता है।
- 2. उर्वरक व्यवस्थापन: उर्वरक का सही ढंग से उपयोग करना कृषि के लिए बहुत महत्वपूर्ण है, और मोबाइल एप्लिकेशन उसे इसके लिए उचित सुझाव और जानकारी प्रदान कर सकता है। इससे किसान अपनी फसलों के लिए सही उर्वरकों का चयन कर सकता है और उन्हें उचित मात्रा में प्रदान कर सकता है।
- 3. समय और श्रम की बचत: मोबाइल एप्लिकेशन के माध्यम से किसान अपने क्षेती के कार्यों को और भी सुचारित और सहज बना सकता है। यह उन्हें अधिक समय और श्रम की बचत करने में मदद कर सकता है, जिससे उन्हें अन्य महत्वपूर्ण कार्यों के लिए समय मिल सकता है।

4. बाजार और मूल्य सूचना: डिजिटल कृषि के माध्यम से किसान बाजार की जानकारी प्राप्त कर सकता है और उसे अच्छीमूल्य पर अपने उत्पादों को बेचने का फैसला करने में मदद मिल सकती है।

चित्र 2: सटीक खेती और विकास केंद्र परियोजना के तहत जल प्रौद्योगिकी केंद्र में लॉगर के साथ जियो कृषि मौसम स्टेशन की स्थापना

यह उन्हें बाजार में होने वाली परिस्थितियों के बारे में सूचित रखने में भी मदद कर सकता है, जिससे उन्हें अगले कदमों के लिए तैयारी करने में सहायक हो सकता है।


5. बीमा सुविधा: डिजिटल कृषि के माध्यम से, किसान अपनी फसलों को निगरानी कर सकते हैं और उन्हें अनुकूल बिमा सुविधाएं प्राप्त कर सकते हैं। यह उन्हें अनुदान और समर्थन प्राप्त करने में मदद करता है जब वे प्राकृतिक आपदाओं से प्रभावित होते हैं।

जियोकृषि ऐप: कीट, रोग और सिंचाई के बारे में जानकारी और चेतावनी देने के लिए आजकल कई मोबाइल आधारित ऐप उपलब्ध हैं। सटीक खेती और विकास केंद्र के तहत, जल प्रौद्यो गिकी केंद्र, नई दिल्ली में डिजिटल प्लेटफॉर्म जियोकृषि स्थापित किया गया है। जियोकृषि में डेटा लॉगर के साथ मिट्टी की नमी सेंसर, हवा का तापमान, आर्द्रता, वर्षा और गीलापन सेंसर शामिल है (चित्र 2)। सभी मेट्रोलॉजिकल पैरामीटर और मिट्टी की नमी की स्थित हर आधे घंटे के अंतराल पर क्लाउड

डेटा में संग्रहीत की जाती है। जिओऋषि ऐप एक एंड्रॉइड आधारित मोबाइल ऐप है जो किसानों को फसल के विकास के विभिन्न चरणों में कीट, बीमारी के बारे में जानकारी देता है। यह किसी भी मौसम की चरम घटना के लिए अलार्म भी देता है। ताकि किसान बेहतर निर्णय ले सकें और नुकसान को कम कर सकें। जल प्रौद्योगिकी केंद्र ने हरियाणा के नूंह जिले में सटीक खेती और विकास केंद्र परियोजना के तहत 25 किसानों को जियोकृषि ऐप से जोड़ा है। परियोजना का लक्ष्य इस वर्ष 100 किसानों को ऐप से जोड़ना है। संस्थान ने 100 प्लॉट का स्थान और फसल का विवरण यानी, बुआई की तारीख, किस्म आदि का विवरण देना होता है।

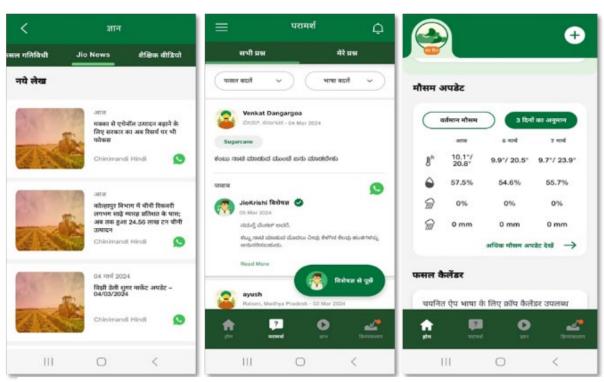
वाष्पीकरण-उत्सर्जन आधारित सिंचाई अलर्ट

उपयोगकर्ता को गूगल प्ले स्टोर से जियो कृषि ऐप डाउनलोड करना होगा और अपने मोबाइल में इंस्टॉल करना होगा। एक बार ऐप का इंस्टालेशन पूरा हो जाने पर, उपयोगकर्ता को फसल की जानकारी, प्लॉट का स्थान, प्लॉट का आकार, बुआई की तारीख और सिंचाई की विधि यानी ड्रिप, सतह या स्प्रिकलर भरना होगा। उपयोगकर्ता को डिस्चार्ज की गणना के लिए ड्रिप और स्प्रिंकलर की जानकारी

चित्र 3: जियो कृषि ऐप का परामर्श, सूचनात्मक वीडियो और अलर्ट टैब

किसानों के लिए एक वर्ष के लिए सिल्वर प्लान सदस्यता ली है।

जियो कृषि ऐप के सिल्वर प्लान की सदस्यता की लागत प्रति किसान प्रति वर्ष लगभग 500 रुपये है। नूंह जिले में किसान मुख्य रूप से टमाटर, मिर्च और प्याज जैसी सिब्जयां उगाते हैं। किसानों ने सिब्जयों के लिए ड्रिप सिंचाई प्रणाली अपनाई है। जियोकृषि ऐप विभिन्न फसलों के वाष्पोत्सर्जन आधारित सिंचाई शेड्यूलिंग अलर्ट प्रदान करता है। यह उस जलवायु परिस्थिति में विशेष फसल की खेती के लिए सर्वोत्तम मिट्टी, पोषक तत्व और कीट प्रबंधन के बारे में जानकारी भी साझा करता (चित्र 3) है। ऐप में उपयोगकर्ता को प्लॉट का आकार, देनी होगी।क्षेत्र की वाष्पीकरण-उत्सर्जन दर के आधार पर सिंचाई अलर्ट प्रदान किया जाएगा। फसल की वाष्पीकरण दर निर्धारित करने के लिए निकटतम मेट्रोलॉजिकल डेटा का उपयोग किया जाता है। जियोकृषि ऐप के सिल्वर प्लान के तहत उर्वरक अलर्ट, कीट और रोग अलर्ट भी प्रदान किया जाता है। ऐप में एक अनुभाग है जहां आप खेती के संबंध में कोई भी प्रश्न पूछ सकते हैं जहां कई अन्य किसान और विशेषज्ञ समस्या के लिए अपने विचार और सुझाव साझा कर सकते (चित्र 4) हैं। जिओकृषि ऐप में उपयोगकर्ता नए कृषि लेख और समाचार भी प्राप्त कर सकते हैं। यह हिंदी और अंग्रेजी भाषा में भी उपलब्ध है। उपयोगकर्ता मोबाइल फोन पर सभी मौसम पूर्वानुमान अलर्ट, सिंचाई अलर्ट और मिट्टी प्रबंधन अलर्ट प्राप्त कर सकता है।


चुनौतियां और समाधान

डिजिटल कृषि के अद्वितीय फायदों के बावजूद, इसमें कुछ चुनौतियां भी हैं जो हल करना महत्वपूर्ण है।

- 1. तकनीकी ज्ञान की कमी: भारत में डिजिटल कृषि की एक बड़ी चुनौती है तकनीकी अंतरबंध। किसानों के बीच तकनीकी ज्ञान की कमी, उच्च तकनीकी उपकरणों तक पहुंचने की कमी और तकनीकी समर्थन की कमी है, जिससे डिजिटल तकनीकों का उपयोग करने में कठिनाई हो रही है।
- 2. **इंफ्रास्ट्रक्चर की कमी:** डिजिटल कृषि के लिए आवश्यक इंफ्रास्ट्रक्चर की कमी एक और चुनौती है। इंटरनेट कनेक्टिविटी, बिजली की अनियमितता और तकनीकी सुविधाओं की कमी डिजिटल कृषि को पूरी तरह से प्रासंगिक बनाने में बाधक हैं।
- 3. अनुप्रयोगिता और विचारशीलता: कई किसान डिजिटल कृषि समाधानों को अपनाने के लिए तैयार नहीं हैं,

- भाषा की कमी हो सकती है। इस समस्या का समाधान करने के लिए, ऐसे एप्लिकेशन्स को स्थानीय भाषाओं में उपलब्ध कराना महत्वपूर्ण है।
- 5. डेटा सुरक्षा और गोपनीयता का संरक्षण: डिजिटल कृषि में डेटा सुरक्षा और गोपनीयता का संरक्षण भी एक बड़ी चुनौती है। किसानों और कृषि उद्यमियों को अपने डेटा की सुरक्षा के लिए सही सुरक्षा प्रक्रियाओं को अपनाना होगा, ताकि उनकी निजी जानकारी सुरक्षित रहे।
- 6. आर्थिक संबंध: डिजिटल कृषि के उपकरणों की खरीद, संचालन, और अनुरक्षण के लिए आर्थिक संबंध भी महत्वपूर्ण हैं। किसानों को उन तकनीकी उपकरणों की आर्थिक दृष्टि से पहुंच प्रदान करना एक बड़ी चुनौती है।

साकारात्मक परिणाम: डिजिटल कृषि और मोबाइल एप्लिकेशन्स का उपयोग करने से कृषि क्षेत्र में सकारात्मक

चित्र 4: जियोकृषि ऐप के उपयोगी टैब

ज्ञान की कमी, विशेषज्ञ से संपर्क करने की कमी और अनुभव की अभावक वजह से वे इन तकनीकों का सही तरीके से उपयोग नहीं कर पा रहे हैं।

4. भाषा की कमी: कुछ किसान ऐसे हो सकते हैं जिन्हें डिजिटल कृषि के एप्लिकेशन्स का सही रूप से उपयोग करने में कठिनाई हो सकती है, क्योंकि उन्हें इसके लिए उपयुक्त परिणाम हो रहे हैं। इससे किसानों को नए तकनीकी उपायों का अधिक से अधिक लाभ हो रहा है और उन्हें अपनी खेती को सुरक्षित, सुधारित और अधिक उत्पादक बनाने में मदद मिल रही है।डिजिटल कृषि विभिन्न श्रम गहन कृषि गतिविधियों के स्वचालन में बहुत मदद करती है। इससे समय, ऊर्जा और धन

की बचत होती है और किसानों को कुछ अधिक गुणात्मक कार्य करने में भी मदद मिलती है।

निष्कर्ष: डिजिटल कृषि और मोबाइल एप्लिकेशन्स का उपयोग कृषि सेक्टर को नए ऊंचाइयों तक पहुँचा रहा है। इन तकनीकी साधनों का सही तरीके से उपयोग करने से किसान अब बेहतर खेती तकनीकों, सही समय पर सिंचाई, और अधिक उत्पादक खेती का आनंद ले रहे हैं। इससे न केवल

उनकी आजीविका में सुधार हो रहा है, बल्कि यह देश की कृषि अर्थव्यवस्था को भी मजबूती प्रदान कर रहा है। इस प्रकार, डिजिटल कृषि और मोबाइल एप्लिकेशन्स का उपयोग कृषि क्षेत्र को एक नई दिशा में ले जा रहा है और भविष्य में इसमें और भी विकास होने की संभावना है।

बच्चों का अनुभाग

जल संबंधित प्रश्नोत्तरी

जल के अणु में हाइड्रोजन के परमाणुओं और एक ऑक्सीजन परमाणु के बीच का कोण क्या है?

(क) 102.7° (ख) 104.5° (ग) 106.4° (घ) 108.5°

2. जल का IUPAC नाम क्या है?

- (क) हाइड्राज़ीन (ख) औकाफॉर्म (ग) हाइड्रोजन ऑक्साइड
- (घ) ऑक्सीडेन

3. निम्नलिखित में से कौन सा जल का सबसे शुद्ध रूप है?

(क) भूजल (ख). नल का पानी (ग) वर्षा का पानी (घ) नदी का पानी

4. विश्व की सबसे बड़ी झील क्या है?

- (क) ह्यूरन झील (ख) विक्टोरिया झील (ग) कैस्पियन सागर
- (घ) सुपीरियर झील

5. मारियाना ट्रेंच किस महासागर में स्थित है?

(क) अटलांटिक महासागर (ख) प्रशांत महासागर (ग) हिंद महासागर (घ) आर्कटिक महासागर

6. समुद्र या महासागर में जल के आवधिक उत्थान और पतन को कहा जाता है?

(क). ज्वार (ख) दोलन (ग) तरंग धारा (घ) घर्षण

7. किस तापमान पर जल का घनत्व अधिकतम होता है?

(क) -4° C (ख) 0° C (ग) 4° C (घ) 8° C

8. जल पारदर्शी होता है, लेकिन गहरे समुद्र में इसका कारण नीला दिखाई देता है?

- (क) आकाश से प्रकाश का विक्षेपण (ख) आकाश से प्रकाश का परावर्तन
- (ग) आकाश से प्रकाश का अपवर्तन (घ) आकाश से प्रकाश का विक्षेपण

मानव शरीर में द्रव्यमान के हिसाब से जल कितना औसत वयस्क होता है?

(क) 45% (ख) 65% (ग) 85% (घ) इनमें से कोई नहीं

10. समुद्री जल को किस प्रक्रिया द्वारा शुद्ध किया जा सकता है?

(क) आसवन (ख) वाष्पीकरण (ग) निस्पंदन (घ) आंशिक आसवन

11. पृथ्वी का लगभग कितना प्रतिशत भाग जल से ढका हुआ है?

(क) 51% (ख) 61% (ग) 71% (ঘ) 81%

12. 20°C पर जल का अपवर्तनांक क्या है?

(क) 1.33 (ख) 1.44 C. 1.55 (ঘ) 1.66

13. जल की क्रिस्टल संरचना क्या है?

(क) टेट्राहेड्रल (ख) बाइपिरामाइडल (ग) प्लेनर (घ) हेक्सागोनल

14. हम विश्व जल दिवस कब मनाते हैं?

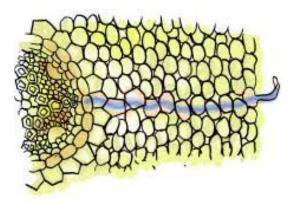
A. 22 मई (ख) 22 अप्रैल (ग) 22 मार्च (घ) 22 जून

15. एक सामान्य पादप कोशिका में जल का प्रतिशत कितना होता है?

(क) 70% (ख) 80% (ग) 60% (घ) 90%

जल और पौधे

पौधे के जीवन में जल की भूमिका


1. पादप कोशिका का प्रमुख घटक

जल पादप कोशिका का महत्वपूर्ण घटक है और इसका लगभग 90% हिस्सा होता है। यह राइबोसोम, माइटोकॉन्ड्रिया और क्लोरोप्लास्ट जैसे कोशिकांगों का प्रमुख घटक है।

2. आवश्यक पोषक तत्वों की उपलब्धता

पौधों को सभी आवश्यक पोषक तत्व जल के माध्यम से उपलब्ध कराये जाते हैं।

3. प्रकाश संश्लेषक उत्पादों का स्थानांतरण

प्रकाश संश्लेषक उत्पादों को पत्तियों से पौधे के अन्य भागों में स्थानांतरित करने में जल मदद करता है।

4. तापमान विनियमन

जल वाष्पोत्सर्जन के लिए आवश्यक है जो पौधे के तापमान को बनाए रखने में महत्वपूर्ण है।

5. मृदा सूक्ष्मजीवों का स्वास्थ्य

जल पौधों के जड़ क्षेत्र के पास उपलब्ध मृदा सूक्ष्मजीवों के इष्टतम विकास में मदद करता है और इस तरह पौधों के स्वास्थ्य को सुविधाजनक बनाता है।

6. यांत्रिक शक्ति और नियमित आकार

जल प्रकाश संश्लेषण, श्वसन और प्रोटीन संश्लेषण जैसी चयापचय प्रक्रियाओं का महत्वपूर्ण घटक है और इसलिए यह पौधों की वृद्धि और विकास में सहायता करता है जिससे यांत्रिक शक्ति और नियमित आकार प्रदान करने में सहायता मिलती है।

चित्र के माध्यम से अपने जल संबंधी ज्ञान का परीक्षण करें

- (क). वाष्पोत्सर्जन
- (ख). वार्धक्य

1.

- (ग). प्रकाश संश्लेषण
- (घ). श्वसन

जल प्रौद्योगिकी केन्द्र भा.कृ.अनु.प.-भारतीय कृषि अनुसंधान संस्थान पूसा, नई दिल्ली-110012

सिंचाई जल परीक्षण सूचना एवं सुझाव का प्रारुप

(प्रारुप निर्माता एवं विषय विशेषज्ञः डॉ. धारा सिंह गुर्जर, वरिष्ठ वैज्ञानिक)

किसान का नाम		ग्राम		खंडजिला		राज्य			
-		मूजल की गहराईजल परीक्षण की दिंनाक							
नमूना पी.एच. संख्या	ई. सी. (डेसी सीमन प्रति मीटर)	सोडियम (मिलीतुल्य प्रति लीटर)	कैल्शियम + मैगनीशियम (मिलीतुल्य प्रति लीटर)	कार्बोनेट + बाईकार्बोने ट (मिलीतुल्य प्रति लीटर)	सोडियम अवशोषण अनुपात	अवशिष्ट सोडियम कार्बोनेट (मिलीतुल्य प्रति लीटर)	जल गुणवत्ता वर्ग <i>(लवणीय /</i> क्षारीय / सामान्य)	सुझावित वर्ग	जिप्सम की मात्रा (किलोग्राम प्रति हेक्टेयर)

सुझावित वर्ग

- (अ) आपका जल सब प्रकार की मिट्टीयो एवं फसलों के लिये उपयुक्त है ।
- (ब) आपका जल लवण अर्द्ध—सहनशील फसलों के लिए रेतीली, रेतीली दोमट, दोमट, चिकनी दोमट व चिकनी जमीनों के लिये उपयुक्त है।
- (स) आपका जल लवण सहनशील फसलों के लिए रेतीली, रेतीली दोमट, दोमट, चिकनी दोमट व चिकनी जमीनों के लिये उपयुक्त है।
- (द) आपके जल में अविशष्ट सोडियम कार्बोनेट की समस्या है अतः इस तरह के जल का सिंचाई में प्रयोग करने से पहले जिप्सम की ऊपर दी गई मात्रा का प्रयोग करे।
- (य) आपका जल सिंचाई के योग्य नहीं है अतः नया बोर करवाये।
- (र) अन्य

लवण सहनशीलता की श्रेणी के अनुसार उपयुक्त फसलें

लवण संवेदेनशील फसलें : सेम, मटर , दाले (चना, मूंग, मैंसूर), हरी सेम, सेलरी, मूली ग्वार, लाल क्लोवर, सफेद क्लोवर

आडू, नासपाती, सेव, स्ट्रॉबेरी, ब्लैकबेरी

लवण अर्द्ध-सहनशील फसलें : जई, चावल, ज्वार, मक्का, बाजरा, गेंहू, अरहर, सोयाबीन, अरंडी, तिल, सूरजमुखी टमाटर,

पत्तागोबी, फूलगोबी, आलू, गाजर, प्याज, करेला, कद्दू, खीरा सेंजी, सूडान गास, रिजंका, ज्वार,

बरसीम, लोबिया, अनार, अंगूर, अमरुद, आम, केला, नींबू, संतरा

लवण सहनशील फसलें : जौं, ढैंचा, सरंसो, कपास, तम्बाकू, तारामीरा शलजम, चुकंदर, ऐस्पैरागस, पालक साल्ट गास,

दूब गास, रोडेज गास, बरमूडा गास, खजूर , नारियल

नोटः 1. यह जल परीक्षण सुचना किसी भी तरह की कानूनी प्रक्रिया के लिए वैध नहीं है ।

2. यह जल नमुना किसान द्वारा लाया गया है ।

3. कृपया विस्तृत जानकारी के लिए परियोजना निदेशक, जल प्रौद्योगिकी केन्द्र, भारतीय कृषि अनुसंघान संस्थान, नई दिल्ली–110012 से मिले ।

जल का वरदान

लहलहाती फसलें, दुधारू नस्लें, झूमते किसान, उनके पुलकते अरमान। ये क्या संभव था बतलाएँ, मिला न होता **जल का वरदान।।**

बाग-बगीचे, बहते झरने, या फैले रेत में हो मरूद्यान। ये क्या संभव था बतलाएँ, मिला न होता **जल का वरदान।।**

बादल बरसे, सरवर हरषे, धूल-धुएँ पर लगे पूर्ण विराम। ये क्या संभव था बतलाएँ, मिला न होता जल का वरदान।।

बर्षा-जल संचें, मितव्ययिता बरतें, जल-प्रशिक्षण का चले अभियान। ये क्या संभव है बतलाएँ, शाश्वत तभी जल का वरदान।।

शशिकान्त सिन्हा

